Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

The controllable magnetic properties of NiCo/C nanocomposites

https://doi.org/10.17073/1609-3577-2019-2-92-103

Abstract

The NiCo/C metal-carbon nanocomposites based on the NiCl2/CoCl2/Polyacrylonitrile (PAN) precursors were synthesized using IR heating. The results of studies of NiCo/C nanocomposites by X-ray phase analysis, transmission electron microscopy, and vibration magnetometry showed the dependence of the structure and properties of NiCo/C nanocomposites on the synthesis temperature, concentration, and metal ratio in the precursor. According to the results of the X-ray phase analysis, it was found that during the IR pyrolysis of the precursor, NiCo metal nanoparticles are stabilized in the carbon matrix, an increase in the synthesis temperature from 350 to 800 °C leads to an increase in the average size of nio nanoparticles from 10 to 80 nm, it is established that the formation of the alloy occurs due to the gradual dissolution of cobalt in nickel with the simultaneous transition of cobalt from the hcp modification to FCC. The structure of nanocomposites was shown by transmission electron microscopy of samples synthesized at 600 °C. It was found that with an increase in the metal concentration in the precursor from 10 to 40 wt.%, the average size of NiCo nanoparticles increases and the concentration of nanoparticles in the carbon matrix increases. The study of the magnetic properties of nanocomposites showed that with an increase in the content of metals in the precursor from 10 to 40 wt.%, an almost linear increase in the saturation magnetization from 5.94 to 25.7 A · m2/kg is observed. A change in the ratio of metals from Ni : Co = 4 : 1 to Ni : Co = 1 : 4 causes an increase in magnetization from 11.46 to 23.3 A · m2/kg.

About the Authors

E. V. Yakushko
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Egor V. Yakushko: Cand. Sci. (Eng.), Associate Professor



L. V. Kozhitov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Lev V. Kozhitov: Dr. Sci. (Eng.), Professor



D. G. Muratov
National University of Science and Technology MISiS; A.V. Topchiev Institute of Petrochemical Synthesis, RAS
Russian Federation

4 Leninsky Prospekt, Moscow 119049;

29, Leninsky prospekt, Moscow, 119991

Dmitry G. Muratov: Cand. Sci. (Eng.)



D. Yu. Karpenkov
Lomonosov Moscow State University
Russian Federation

1 Leninskie Gory, Moscow, 119991

Dmitry Yu. Karpenkov: Cand. Sci. (Phys.-Math.), Researcher

 



A. V. Popkova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Alena V. Popkova: Cand. Sci. (Eng.), Senior Researcher



References

1.  Gondal M. A., Saleh T. A., Drmosh Q. A. Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl. Sur. Sci., 2012, vol. 258, no. 18, pp. 6982—6986. DOI: 10.1016/j.apsusc.2012.03.147

2.  Lizunova A. A., Efimov A. A., Arsenov P. V., Ivanov V. V. Influence of the sintering temperature on morphology and particle size of silver synthesized by spark discharge. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 307, p. 012081. DOI: 10.1088/1757-899X/307/1/012081

3.  Ming J. H., Bin L., Shu H. Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni Co alloy microstructures. Nano Research, 2008, vol. 1, pp. 303—313. DOI: 10.1007/s12274-008-8031-6

4.  Sudhakar P., Daniel B. S. S., Jeevanandam P. Synthesis of nanocrystalline Co–Ni alloys by precursor approach and studies on their magnetic properties. J. Magn. Magn. Mater., 2011, vol. 323, no. 17, pp. 2271—2280. DOI: 10.1016/j.jmmm.2011.04.006

5.  Shuaiwei Wen, Tao Yang, Naiqin Zhao, Liying Ma, Enzuo Liu. Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution. Appl. Catalysis B: Environmental, 2019, vol. 258, p. 117953. DOI: 10.1016/j.apcatb.2019.117953

6.  Yirong Zhu, Zhibin Wu, Mingjun Jing, Xuming Yang, Weixin Song, Xiaobo Ji. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources, 2015, vol. 273, pp. 584—590. DOI: 10.1016/j.jpowsour.2014.09.144

7.  Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C. Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 2008, vol. 83, no. 5, pp. 761—769. DOI: 10.1038/sj.clpt.6100400

8.  Arsenov P. V., Vlasov I. S., Efimov A. A., Minkov K. N., Ivanov V. V. Aerosol jet printing of platinum microheaters for the application in gas sensors. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 473, p. 012042. DOI: 10.1088/1757-899X/473/1/012042

9.  Efimov A. A., Arsenov P. V., Protas N. V., Minkov K. N., Urazov M. N., Ivanov V. V. Dry aerosol jet printing of conductive silver lines on a heated silicon substrate. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 307, p. 012082. DOI: 10.1088/1757-899X/307/1/012082

10.  Arsenov P. V., Efimov A. A., Protas N. V., Ivanov V. V. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 324, p. 012016. DOI: 10.1088/1757-899X/324/1/012016

11.  Danfeng Zhang, Fangxing Xu, Jin Lin, Zhenda Yang, Min Zhang. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range. Carbon, 2014, vol. 80, pp. 103—111. DOI: 10.1016/j.carbon.2014.08.044

12.  Juan Xiong, Zhen Xiang, Jing Zhao, Lunzhou Yu, Erbiao Cui, Bowen Deng, Zhicheng Liu, Rui Liu, Wei Lu. Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon, 2019, vol. 154, pp. 391—401. DOI: 10.1016/j.carbon.2019.07.096

13.  Cuiping Li, Jing Sui, Ziqiu Zhang, Xiaohui Jiang, Zhiming Zhang, Liangmin Yu. Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40 GHz. Chem. Eng. J., 2019, vol. 375, p. 122017. DOI: 10.1016/j.cej.2019.122017

14.  Saichun Hu, Yuming Zhou, Man He, Qiang Liao, Haiyong Yang, Haifang Li, Ran Xu, Qinghua Ding. Hollow Ni-Co layered double hydroxides-derived NiCo-alloy@g-C3N4 microtubule with high-performance microwave absorption. Mater. Lett., 2018, vol. 231, pp. 171—174. DOI: 10.1016/j.matlet.2018.08.048

15.  Weichun Ye, Jiajia Fu, Qin Wang, Chunming Wang, Desheng Xue. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets. J. Magn. Magn. Mater., 2015, vol. 395, pp. 147—151. DOI: 10.1016/j.jmmm.2015.07.087

16.  Kozhitov L. V., Kuzmenko A. P., Kozhitov S. L., Muratov D. G., Harseev V. A., Rodionov V. V., Popkova A. V., Matveev K. E., Yakushko E. V. Influence of the ratio of metal composed nanocomposites Fe-Co/C on phase composition. J. Nano- Electron. Phys., 2013, vol. 5, no. 4, p. 04008.

17.  Kozhitov L. V., Muratov D. G., Yakushko E. V., Kozhitov S. L., Savchenko A. G., Shchetinin I. V., Emelyanov S. G., Chervjakov L. M. The synthesis of metalcarbon nanocomposite Ni/C on the basis of polyacrylonitrile. J. Nano- Electron. Phys., 2013, vol. 5, no. 4, p. 04007.

18.  Kozhitov L. V., Bulatov M. F., Korovushkin V. V., Kostishin V. G., Muratov D. G., Shipko M. N., Emelyanov S. G., Yakushko E. V. The formation and study of the FeCo nanoparticles alloy in structure of metal-carbon nanocomposites FeCo/C. J. Nano- Electron. Phys., 2015, vol. 7, no. 4, p. 04103.

19.  Kozhitov L., Kuzmenko A., Muratov D., Rodionov V., Popkova A., Yakushko E., Dobromyslov M. Influence of structural features and physico-chemical properties of metal-carbon nanocomposites with ferromagnetic metal inclusions on microwave radiation. J. Nano- Electron. Phys., 2014, vol. 6, no. 3, p. 03024.

20.  Muratov D. G., Kozhitov L. V., Emelyanov S. G., Yakushko E. V., Bulatov M. F. The influence of synthesis temperature on the structure, composition and magnetic properties of nanocomposites NiCo/C. J. Nano- Electron. Phys., 2015, vol. 7, no. 4, p. 04071

21.  Yakushko E. V., Kozhitov L. V., Muratov D. G., Kostishin V. G. NiCo/C nanocomposites: Synthesis and magnetic properties. Russ. J. Inorg. Chem., 2016, vol. 61, no. 12, pp. 1591—1595. DOI: 10.1134/S0036023616120202

22.  Ghimbeu C. M., Le Meins J.-M., Zlotea C., Vidal L., Schrodj G., Latroche M., Vix-Guterl C. Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy. Carbon, 2014, vol. 67, pp. 260—272. DOI: 10.1016/j.carbon.2013.09.089

23.  Tarasevich Yu. Yu. Perkolyatsiya: teoriya, prilozheniya, algoritmy [Percolation: theory, applications, algorithms]. Moscow: Librocom, 2011, 116 p. (In Russ.)


Review

For citations:


Yakushko E.V., Kozhitov L.V., Muratov D.G., Karpenkov D.Yu., Popkova A.V. The controllable magnetic properties of NiCo/C nanocomposites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):92-103. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-92-103

Views: 825


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)