Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Comparison of the results of optical and electrophysical measurements of free electron density in n-GaAs samples doped with tellurium

https://doi.org/10.17073/1609-3577-2021-1-27-33

Abstract

A theoretical model has been developed that allows one to determine free electron density in n-GaAs from the characteristic points on far-infrared reflection spectra. It was shown that, in this case, it is necessary to take into account the plasmon-phonon coupling (otherwise, the electron density is overestimated). The calculated dependence of electron density, Nopt, on the characteristic wave number, ν+, which is described by a second degree polynomial, has been obtained.
Twenty-five tellurium-doped gallium arsenide samples were used to measure the electron density in two ways: according to traditional four-contact Hall method (Van der Pauw method) and using the optical method we developed (measurements were carried out at room temperature). Based on the experimental results, the dependence was constructed of the electron density values obtained from the Hall data, NHall, on the electron density obtained by the optical method, Nopt. It is shown that this dependence is described by linear function. It is established that the data of optical and electrophysical measurements coincide if the electron density is Neq = 1.07 ⋅ 1018 cm-3, for lower values of the Hall density NHall < Nopt, and for large values NHall > Nopt. 
A qualitative model is proposed to explain the results. It has been suggested that tellurium atoms bind to vacancies of arsenic into complexes, as a result of which the electron density decreases. On the surface of the crystal, the concentration of arsenic vacancies is lower and, therefore, the condition Nopt > NHall should be satisfied. As the doping level increases, more and more tellurium atoms remain electrically active, so electron density in the volume begins to prevail over the surface one. However, with a further increase in the doping level, the ratio NHall/Nopt again decreases, tending to unity. This, probably, is due to the fact that the rate of decomposition of the complexes “tellurium atom + arsenic vacancy” decreases with increasing doping level.

About the Authors

T. G. Yugova
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet”)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Tatyana G. Yugova: Cand. Sci. (Eng.), Senior Researcher



A. G. Belov
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet”)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Aleksandr G. Belov: Cand. Sci. (Phys.-Math.), Leading Researcher



V. E. Kanevskii
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet”)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Vladimir E. Kanevskii: Cand. Sci. (Eng.), Senior Researcher



E. I. Kladova
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet”)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Evgeniya I. Kladova: Researcher



S. N. Knyazev
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet”)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Stanislav N. Knyazev: Cand. Sci. (Eng.), Head of Laboratory



References

1. Tsmots V. M., Shakhovtsov V. I., Shindich V. L., Shpinar L. I., Shubak M. I., Stym V. S., Yaskovets L. N. Magnetism of plactically deformd Ge and Si crystals. Solid State Communication, 1987, vol. 63, no. 1, pp. 1—3. DOI: 10.1016/0038-1098(87)90053-6

2. Pavlov V. A., Pereturina I. A., Pecherkina Î. L. The effect of constant magnetic field on mechanical properties and dislocation structure of Nb and Mo. Phys. Status Solidi (a), 1980, vol. 57, no. 1, pp. 449—456. DOI: 10.1002/pssa.2210570151

3. Alshits V. I., Darinskaya E.V., Perekalina T. M., Urutsovskaya A. A. On the motion of dislocations in NaCl crystals under the influence of a constant magnetic field. Fizika tverdogo tela = Physics of the Solid State, 1987, vol. 29, no. 2, pp. 467—471. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/35609

4. Alshits V. I., Darinskaya E. V., Petrzhik E. A. Effects of magnetic fields on the dislocation unlocking from paramagnetic centers in non-magnetic crystals. Materials Science and Engineering, 1993, vol. A164, pp. 322—326. DOI: 10.1016/0921-5093(93)90686-9

5. Darinskaya E. V., Petrzhik Е. А., Erofeeva S. A. Dislocation motion in InSb crystals under a magnetic field. J. Phys.: Condens. Matter., 2002, vol. 14, no. 48, pp. 12883—12886. DOI: 10.1088/0953-8984/14/48/328

6. Levin M. N., Tatarintsev A. V., Kostsova О. А., Kostsov А. М. Semiconductor surface activation by impulse magnetic field. Zhurnal tekhnicheskoi fiziki = Technical Physics, 2003, vol. 73, no. 10, pp. 85—87. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/8096

7. Steblenko L. P., Plyushchay I. V., Kalinichenko D. V., Kurilyuk A. N., Krit A. N., Trachevsky V. V. Magnetic-induced enrichment of the silicon surface with magnetically sensitive impurities. In: Materialy i struktury sovremennoi elektroniki: sbornik trudov V mezhdunarodnoi nauchnoi konferentsii = Materials and Structures of Modern Electronics: Proc. V International Scientific Conference. Minsk: Izdatel’skii tsentr BGU, 2012, pp. 91—94. (In Russ.). URL: http://elib.bsu.by/handle/123456789/38078

8. Galkin G. N., Blinov L. M., Vavilov V. S., Solomatin A. G. Plasma resonance on nonequilibrium carriers in semiconductors. Pis’ma v zhurnal tekhnicheskoi fiziki = Technical Physics Letters, 1968, vol. 7, no. 3, pp. 93—96. (In Russ.). URL: http://www.jetpletters.ac.ru/ps/833/article_12795.pdf

9. Belogorokhov A. I., Belov A. G., Petrovitch P. L., Rashevskaya E. P. Determination of the concentration of free charge carriers in Pb1-xSnxTe taking into account the damping of plasma oscillations. Optika i spectroskopiya, 1987, vol. 63, no. 6, pp. 1293—1296. (In Russ.)

10. Belogorokhov A. I., Belogorokhova L. I., Belov A. G., Rashevskaya E. P. Plasma resonance of free charge carriers and estimation of some parameters of the band structure of the material CdxHg1-xTe. Fizika i tekhnika poluprovodnikov = Semiconductors, 1991, vol. 25, no. 7, pp. 1196—1203. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/23491

11. Sharov M. K. Plasma resonance in Pb1-xAgxTe alloys. Semiconductors. 2014, vol. 48, no. 3, pp. 299—301. DOI: 10.1134/S1063782614030245

12. Rokakh A. G., Shishkin M. I., Skaptsov A. A., Puzynya V. A. On the possibility of the plasma resonance in CdS-PbS films in the middle infrared region. Prikladnaya Fizika, 2014, no. 5, pp. 58—60. (In Russ.)

13. Varga B. B. Coupling of plasmons to polar phonons in degenerate semiconductors. Phys. Rev., 1965, vol. 137, no. 6A, pp. 1896—1901. DOI: 10.1103/PhysRev.137.A1896

14. Singwi K. S., Tosi M. P. Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev., 1966, vol. 147, no. 2, pp. 658—662. DOI: 10.1103/PhysRev.147.658

15. Shkerdin G., Rabbaa S., Stiens J., Vounckx R. Influence of electron scattering on phonon-plasmon coupled modes dispersion and free electron absorption in n-doped GaN semiconductors at mid-IR wavelengths. Phys. Status Solidi (b), 2014, vol. 251, no. 4, pp. 882—891. DOI: 10.1002/pssb.201350039

16. Ishioka K., Brixius K., Höfer U., Rustagi A., Thatcher E. M., Stanton C. J., Petek H. Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor. Phys. Rev. B, 2015, vol. 92, no. 20, pp. 205203. DOI: 10.1103/PhysRevB.92.205203

17. Volodin V. A., Efremov M. D., Preobrazhensky V. V., Semyagin B. R., Bolotov V. V., Sachkov V. A., Galaktionov E. A., Kretinin A. V. Investigation of phonon-plasmon interaction in GaAs/AlAs tunnel superlattices. Pis’ma v zhurnal tekhnicheskoi fiziki = Technical Physics Letters, 2000, vol. 71, no. 11, pp. 698—704. (In Russ.). URL: http://www.jetpletters.ac.ru/ps/909/article_13947.pdf

18. Kulik L. V., Kukushkin I. V., Kirpichev V. E., Klitzing K. V., Eberl K. Interaction between intersubband Bernstein modes and coupled plasmon-phonon modes. Phys. Rev. B, 2000, vol. 61, no. 19, pp. 12717—12720. DOI: 10.1103/PhysRevB.61.12717

19. Mandal P. K., Chikan V. Plasmon-phonon coupling in charged n-type CdSe quantum dots: a THz time-domain spectroscopic study. Nano Letters, 2007, vol. 7, no. 8, pp. 2521—2528. DOI: 10.1021/nl070853q

20. Stepanov N., Grabov V. Optical properties Bi1-xSbx crystals, related electron-plasmon and plasmon-phonon interactions. Izv. RGPU im. Gertsena, 2004, vol. 4, no. 8, pp. 52—64. (In Russ.)

21. Trajic J., Romcevic N., Romcevic M., Nikiforov V. N. Plasmon-phonon and plasmon-two different phonon interaction

22. in Pb1-xMnxTe mixed crystals. Materials Research Bulletin, 2007, vol. 42, no. 12, pp. 2192—2201. DOI: 10.1016/j.materresbull.2007.01.003

23. Chudzinski P. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth. Europian Physical J. B, 2015, vol. 88, no. 12, pp. 344. DOI: 10.1140/epjb/e2015-60674-3

24. Belov A. G., Denisov I. A., Kanevskii V. E., Pashkova N. V., Lysenko A. P. Determining the free carrier density in CdxHg1-xTe solid solutions from far-infrared reflection spectra. Semiconductors, 2017, vol. 51, no. 13, pp. 1732—1736. DOI: 10.1134/S1063782618150034

25. Yu P. Y., Cardona M. Fundamentals of Semiconductors. Berlin; Heidelberg: Springer-Verlag 2010, 778 p. DOI: 10.1007/978-3-642-00710-1

26. Vinogradov E. A., Vodopyanov L. K. Graphical method for determining phonon frequencies from reflection spectra of crystals in the far infrared region of the spectrum. Kratkie soobtsheniya po fizike, 1972, no. 11, pp. 29—32. (In Russ.)

27. Belogorokhov A.I., Belogorokhova L. I. Optical phonons in cylindrical filaments of porous GaP. Fizika tverdogo tela = Physics of the Solid State, 2001, vol. 43, no. 9, pp. 1693—1697. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/38320

28. Belova I. M., Belov A. G., Kanevskii V. E., Lysenko A. P. Determining the concentration of free electrons in n-InSb from far-infrared reflectance spectra with allowance for plasmon-phonon coupling. Semiconductors, 2018, vol. 52, no. 15, pp. 1942—1946. DOI: 10.1134/S1063782618150034

29. Yugova T. G., Belov A. G., Knyazev S. N. Magnetoplastic effect in Te-doped GaAs single crystals. Crystallography Reports. 2020, vol. 65, no. 1, pp. 7—11. DOI: 10.1134/S1063774520010277

30. Semenova G. V., Sushkova T. P. Defekty struktury i fizicheskie svoistva kristallov [Structural defects and physical properties of crystals]. Voronezh: Izdatel’sko-poligraficheskii tsentr Voronezhskogo gosudarstvennogo universiteta, 2007, 52 p. (In Russ.)


Review

For citations:


Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N. Comparison of the results of optical and electrophysical measurements of free electron density in n-GaAs samples doped with tellurium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1):27-33. (In Russ.) https://doi.org/10.17073/1609-3577-2021-1-27-33

Views: 764


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)