Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Nonlinear dynamic approach to the analysis of memristor parameters instability

https://doi.org/10.17073/1609-3577-2019-4-253-261

Abstract

A general set of ideas related to the memristors modeling is presented. The memristor is considered to be a partially ordered physical and chemical system that is within the “edge of chaos“ from the point of view of nonlinear dynamics. The logical and historical relationship of memristor physics, nonlinear dynamics, and neuromorphic systems is illustrated in the form of a scheme. We distinguish the nonlinearity into external ones, when we describe the behavior of an electrical circuit containing a memristor, and internal ones, which are caused by processes in filament region. As a simulation model, the attention is drawn to the connectionist approach, known in the theory of neural networks, but applicable to describe the evolution of the filament as the dynamics of a network of traps connected electrically and quantum-mechanically. The state of each trap is discrete, and it is called an “oscillator“. The applied meaning of the theory of coupled maps lattice is indicated. The high-density current through the filament can lead to the need to take into account both discrete processes (generation of traps) and continuous processes (inclusion of some constructions of solid body theory into the model).
However, a compact model is further developed in which the state of such a network is aggregated to three phase variables: the length of the filament, its total charge, and the local temperature. Despite the apparent physical meaning, all variables have a formal character, which is usually inherent in the parameters of compact models. The model consists of one algebraic equation, two differential equations, and one integral connection equation, and is derived from the simplest Strukov’s model. Therefore, it uses the “window function” approach. It is indicated that, according to the Poincare—Bendixon theorem, this is sufficient to explain the instability of four key parameters (switching voltages and resistances ON/OFF) at a cycling of memristor. The Fourier spectra of the time series of these parameters are analyzed on a low sample of experimental data. The data are associated with the TiN/HfOx/Pt structure (0 < x < 2). A preliminary conclusion that requires further verification is the predominance of low frequencies and the stochasticity of occurrence ones.

About the Author

I. V. Matyushkin
JSC Molecular Electronics Research Institute, 12/1 1st Zapadniy Proezd, Zelenograd, Moscow 124460, Russia
Russian Federation
Igor V. Matyushkin: Cand. Sci. (Phys.-Math.), Senior Researcher


References

1. Tarkov M. S. Implementation of a neural WTA-network on the memristor crossbar. Prikl. Diskr. Mat. Suppl., 2015, no. 8, pp. 151—154. (In Russ.). DOI: 10.17223/2226308X/8/59

2. Wang Z., Wu H., Burr G. W., Hwang C. S., Wang K. L., Xia Q., Yang J. J. Resistive switching materials for information processing. Nature Rev. Mater., 2020, vol. 5, pp. 173—195. DOI: 10.1038/s41578-019-0159-3

3. Zhao M., Gao B., Tang J., Qian H., Wu H. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev., 2020, vol. 7, no. 1, p. 011301(16pp.). DOI: 10.1063/1.5124915

4. Benderli S. Wey T. A. On SPICE macromodeling of TiO2 memristors. Electronics Lett., 2009, vol. 45, no. 7, pp. 377—379. DOI: 10.1049/EL.2009.3511

5. Pickett M. D., Strukov D. B., Borghetti J. L., Yang J. J., Snider G. S., Stewart D. R., Williams R. S. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys., 2009, vol. 106, no. 7, p. 074508. DOI: 10.1063/1.3236506

6. Yakopcic C., Taha T. M., Subramanyam G., Pino R. E., Rogers S. A memristor device model. IEEE Electron Device Letters, 2011, vol. 32, no. 10, pp. 1436—1438. DOI: 10.1109/LED.2011.2163292

7. Chua L. Memristor. The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, pp. 507—519. DOI: 10.1109/TCT.1971.1083337

8. Chang H., Song Q., Li Y., Wang Z., Chen G. Unstable limit cycles and singular attractors in a two-dimensional memristor-based dynamic system. Entropy, 2019, vol. 21, no. 4, p. 415 (10pp.). DOI: 10.3390/e21040415

9. Mikheev R., Teplov G., Matyushkin I. Compact model of nonlinear dynamics while the cycling of a memristor. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). St. Petersburg; Moscow (Russia), 2019, pp. 2057—2061. DOI: 10.1109/EIConRus.2019.8657191

10. Pershin Y. V., Slipko V. A. Dynamical attractors of memristors and their networks. EPL (Europhysics Letters), 2019, vol. 125, no. 2, p. 20002. DOI: 10.1209/0295-5075/125/20002

11. Pershin Y. V., Slipko V. A. Bifurcation analysis of a TaO memristor model. J. Phys. D: Appl. Phys., 2019, vol. 52, no. 50, p. 505304. DOI: 10.1088/1361-6463/ab4537

12. Crutchfield J. P., Young K. Computation at the onset of chaos. In: Entropy, Complexity, and the Physics of Information. Ed. by W. Zurek. Addison-Wesley, Reading, 1990, pp. 223—269. URL: http://csc.ucdavis.edu/~cmg/papers/CompOnset.pdf

13. Csaba G., Porod W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev., 2020, vol. 7, no. 1, p. 011302. DOI: 10.1063/1.5120412

14. Malagarriga D., García-Vellisca M. A., Villa A. E. P., Buldú J. M., García-Ojalvo J., Pons A. J. Synchronization-based computation through networks of coupled oscillators. Front. Comput. Neurosci., 2015, vol. 9, p. 97(13pp.). DOI: 10.3389/fncom.2015.00097

15. Islamov D. R., Gritsenko V. A., Perevalov T. V., Pustovarov V. A., Orlov O. M., Chernikova A. G., Markeev A. M., Slesazeck S., Schroeder U., Mikolajick T., Krasnikov G. Ya. Identification of the nature of traps involved in the field cycling of Hf0.5Zr0.5O2-based ferroelectric thin films. Acta Materialia, 2019, vol. 166, pp. 47—55. DOI: 10.1016/j.actamat.2018.12.008

16. Panda D., Sahu P. P., Tseng T. Y. A collective study on modeling and simulation of resistive random access memory. Nanoscale Res. Lett., 2018, vol. 13, no. 1, art. no. 8. DOI: 10.1186/s11671-017-2419-8

17. Miritello G., Pluchino A., Rapisarda A. Central limit behavior in the Kuramoto model at the “Edge of Chaos”. Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, no. 23, pp. 4818—4826. DOI: 10.1016/j.physa.2009.08.023

18. Everhardt A. S., Damerio S., Zorn J. A., Zhou S., Domingo N., Catalan G., Salje E. K. H., Chen L.-Q., Noheda B. Periodicity-doubling cascades: direct observation in ferroelastic materials. Phys. Rev. Lett., 2019, vol. 123, no. 8, p. 087603(6pp.). DOI: 10.1103/PhysRevLett.123.087603

19. Orlov O., Murashev V., Lebedev A., Orlov V., Ivanov S. Features of the improving of the HFO2 ReRAM cells characteristics reproducibility. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). St. Petersburg; Moscow (Russia), 2019, pp. 2087—2089. DOI: 10.1109/EIConRus.2019.8657230

20. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature, 2008, vol. 453, pp. 80—83. DOI: 10.1038/nature06932

21. Kim S., Kim H.-D., Choi S.-J. Compact two-state-variable second-order memristor model. Small, 2016, vol. 12, no. 24, pp. 3320—3326. DOI: 10.1002/smll.201600088


Review

For citations:


Matyushkin I.V. Nonlinear dynamic approach to the analysis of memristor parameters instability. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(4):253-261. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-253-261

Views: 998


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)