Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

A new generation of nanocomposite materials based on carbon and titanium for use in supercapacitor energy storage devices

https://doi.org/10.17073/1609-3577-2019-3-212-218

Abstract

In this paper, promising nanocomposite materials based on carbon and titanium are considered. It is shown that the use of a highly porous matrix is of particular interest. Materials based on such matrices have minimal weight and high strength characteristics. The paper also describes composites based on porous carbon fibers with metal oxides. The directions for producing composites can be divided into three types: matrix method, coating of finished nanoparticles with an inert shell, and the formation of nanoparticles and matrices in one process. The coating of nanoparticles with an inert shell prevents their oxidation and preserves the necessary magnetic properties. When using methods such as IR pyrolysis, arc evaporation forms third-party metal-carbon phases that pollute the resulting material. To avoid this, reducing agents are used, for example, hydrogen when coking nanoparticles in a methane plasma current restores metal particles from its Sol-gel and prevents them from reacting with carbon. But with this method, it is difficult to control the particle size. Using a ready-made matrix allows you to control the size of nanoparticles. However, this method uses high temperatures, and sometimes hydrogen, which complicates the production process. The main problem in the field of nanocomposites is the search for more technological, simple, cheap and environmentally friendly methods for obtaining nanocomposites with high performance characteristics. The developed technology for forming the pore space of the initial carbon matrix does not have the above disadvantages. This technology has a simple, cheap, environmentally friendly design. high temperatures are not used in the process of producing nanocomposites and third-party metal-carbon phases are not formed. The resulting nanocomposite materials were used as electrodes for ultra-high-volume capacitor structures. When studying the capacitance and electrical characteristics of samples, it was found that the formation of metal on a porous carbon matrix can significantly reduce the internal resistance of the cell and increase the specific energy consumption.

About the Authors

V. V. Sleptsov
Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russia
Russian Federation
Vladimir V. Sleptsov: Dr. Sci. (Eng.), Professor, Head of Department


L. V. Kozitov
National University of Science and Technology MISiS, 4 Leninsky Prospekt, Moscow 119049, Russia
Russian Federation
Lev V. Kozitov: Dr. Sci. (Eng.), Professor


A. O. Diteleva
Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russia
Russian Federation
Anna O. Diteleva: Assistant


D. Yu. Kukushkin
Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russia
Russian Federation
Dmitry Yu. Kukushkin: Dr. Sci. (Eng.), Assistant


A. A. Nagaev
National University of Science and Technology MISiS, 4 Leninsky Prospekt, Moscow 119049, Russia
Russian Federation
Artem A. Nagaev: Student


References

1. Pelevin F. V. Technology for manufacturing porous materials. Bulletin of the Association of tourism and service universities, 2007, vol. 1, no. 3, pp. 46—51. (In Russ.)

2. Voropai A. N. Poluchenie nanostrukturirovannykh kompozitov na osnove vysokoporistykh uglerodnykh matrits, napolnennykh Ni ili Ni(OH)2, opredelenie faktorov, vliyayushchikh na ikh fiziko-khimicheskie svoistva [Obtaining nanostructured composites based on highly porous carbon matrices filled with Ni or Ni(OH)2, determination of factors affecting their physicochemical properties.] Symmary of Diss. Cand. Sci. Chem. Kemerovo, 2014, 23 p. (In Russ.)

3. Burke A. Ultracapacitors: why, how, and where is the technology. J. Power Sources, 2000, vol. 91, no. 1, pp. 37—50. DOI: 10.1016/S0378-7753(00)00485-7

4. Simon P., Gogotsi Yu. Materials for electrochemical capacitors. Nature materials, 2008, vol. 7, pp. 845—854. DOI: 10.1038/nmat2297

5. Kötz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000, vol. 45, no. 15–16, pp. 2483—2498. DOI: 10.1016/S0013-4686(00)00354-6

6. Balyshkov A. Ionistors. Elektronnye komponenty, 2005, no. 11/12, pp. 91—97. (In Russ.)

7. Zhou W.-J., Xu M.-W., Zhao D.-D., Xu C.-L., Li H.-L. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous and Mesoporous Materials, 2009, vol. 117, no. 1–2, pp. 55—60. DOI: 10.1016/j.micromeso.2008.06.004

8. Wutao Wei, Liwei Mi, Yang Gao, Zhi Zheng, Weihua Chen, Xinxin Guan. Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem. Mater., 2014, vol. 26, no. 11, pp. 3418—3426. DOI: 10.1021/cm5006482

9. Patent 2026732 (RF). Sposob polucheniya sorbenta dlya vydeleniya belkov [A method of producing a sorbent for the isolation of proteins]. V. A. Vasilevskii, V. A. Avramenko, L. A. Zemskova, T. A. Sokol’nitskaya, 1995. (In Russ.)

10. Patent 2075170 (RF). Sposob polucheniya tonkosloinykh neorganicheskikh sorbentov [A method of obtaining thin-layer inorganic sorbents]. L. A. Zemskova, E. L. Yakimovich, V. A. Avramenko, V. V. Zheleznov, V. Yu. Glushchenko, 1997. (In Russ.)

11. Liang H., Chen F., Li R., Wang L., Deng Z. Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors // Electrochimica Acta, 2004, vol. 49, no. 21, pp. 3463—3467. DOI: 10.1016/j.electacta.2004.03.016

12. Sheveleva I. V., Zemskova L. A., Voit A. V., Zheleznov S. V., Kuryavyi V. G. Relationship between electrochemical and structural properties of modified carbon fibers. Russ. J. Appl. Chem., 2007, vol. 80, no. 5, pp. 740—745. DOI: 10.1134/S1070427207050102

13. New carbon based materials for electrochemical energy storage systems: batteries, supercapacitors and fuel cells. Eds. by I. V. Barsukov, C. S. Johnson, J. E. Doninger, V. Z. Barsukov. Dordrecht: (Netherlands), 2006, pp. 33—41. DOI: 10.1007/1-4020-4812-2

14. Zemskova L. A., Sheveleva I. V., Barinov N. N., Kaidalova T. A., Voit A. V., Zheleznov S. V. Manganese oxide carbon fibrous materials. Russ. J. Appl. Chem., 2008, vol. 81, no. 7, pp. 1187—1192. DOI: 10.1134/S1070427208070124

15. Zemskova L. A. Modified carbon fibers: sorbents, electrode materials, catalysts. Vestnik of Far Eastern Branch of Russian Academy of Sciences, 2009, no. 2, pp. 39—52. (In Russ.)

16. Jakubowicz J., Adamek G., Dewidar M. Titanium foam made with saccharose as a space holder. J. Porous. Mater., 2013, vol. 20, pp. 1137—1141. DOI: 10.1007/s10934-013-9696-0

17. Vu D. H., Sleptsov V. V. Development of technology for electrode materials. International Research Journal, 2015, no. 11, pt 2, pp. 22—29. (In Russ.). DOI: 10.18454/IRJ.2015.42.095

18. Sleptsov V. V. Fiziko-khimicheskie osnovy nanomaterialov i nanotekhnologii [Physico-chemical fundamentals of nanomaterials and nanotechnology]. Moscow: MATI-RGTU im. K. E. Tsiolkovskogo, 2015, 196 p. (In Russ.)

19. Nesterov V. A., Kukushkin D. Yu., Kozlov A. P. Investigation of the metallization of porous materials by deposition of metal nanoclusters onto the surface by electrophoresis. Sbornik tezisov dokladov XLIV Mezhdunarodnoi molodezhnoi nauchnoi konferentsii “Gagarinskie chteniya-2018” = Abstracts of the XLIV International Youth Scientific Conference “Gagarin Readings-2018”. Moscow: MAI, 2018, p. 281. (In Russ.)

20. Sleptsov V. V., Savkin A. V., Kukushkin D. Yu., Diteleva A. O. Research of the deposition process of metal nanoclusters on the surface of porous materials by the electrophoresis method. Vestnik mashinostroeniya, 2018, no. 9, pp. 45—47. (In Russ.)

21. Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Telegina O. S., Kovnev A. V., Orozaliev E. E., Sleptsov V. V. Impedance spectroscopy of polymer composites based on base potassium polytitanate. Elektrokhimicheskaya Energetica = Electrochemical Energetics, 2014, vol. 14, no. 3, pp. 141—148. (In Russ.)

22. Gorokhovsky A. V., Palagin A. I., Panova L. G., Ustinova T. P., Burmistrov I. N., Aristov D. V. Manufacturing submicro-nanoscale potassium polytitanates and composite materials based on them. Nanotekhnika, 2009, no. 3, pp. 38—44. (In Russ.)

23. Gorokhovsky A. V., Panova L. G., Burmistrov I. N., Ustinova T. P., Levkina N. L. Potassium polytitanates with a fibrous and scaly structure: synthesis and application. International forum on nano-technology: collection of reports of scientific and technological sections. Moscow: Rosnano, 2008, vol. 1, pp. 168—169. (In Russ.)


Review

For citations:


Sleptsov V.V., Kozitov L.V., Diteleva A.O., Kukushkin D.Yu., Nagaev A.A. A new generation of nanocomposite materials based on carbon and titanium for use in supercapacitor energy storage devices. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(3):212-218. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-212-218

Views: 1125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)