Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Preparation and transport properties of oriented buckypapers with single walled carbon nanotubes

https://doi.org/10.17073/1609-3577-2019-2-104-111

Abstract

Buckypapers (BP) with carbon nanotubes (CNT) are very promising for a lot of applications, in which their high conductance, strength and small weight are required. In this work, isotropic BP were prepared using the solution-based deposition that includes the single walled carbon nanotubes (SWCNT) dispersion and the dispersion filtration from a solvent. To increase the BP conductivity, the orientation of the SWCNT bundles composing BP and a following iodine doping were applied. The method of extrusion through the narrow (300 µm) gap was used for the SWCNT orientation. The temperature dependences of conductance for isotropic, oriented and doped BP were studied to understand the effect of CNT alignment and the mechanism of transport through SWCNT BP. It was shown that bundle orientation increases the BP conductivity from ~103 S × cm-1 to ~104 S × cm-1, and iodine doping of oriented samples additionally increase the conductivity by an order. The fluctuation – assisted tunneling between CNT bundles was used to describe the mechanism of low temperature conductivity.

About the Authors

M. S. Galkov
OCSiAl Group
United States

1804 Embarcadero Rd., Suite 202, Palo Alto, California, 94303

Mikhail S. Galkov



N. P. Stepina
Institute of Semiconductor Physics
Russian Federation

13 Lavrent’ev Ave., Novosibirsk 630090, Russia

Natalia P. Stepina



M. R. Predtechenskiy
OCSiAl Group
United States

1804 Embarcadero Rd., Suite 202, Palo Alto, California, 94303

Mikhail R. Predtechenskiy



A. E. Bezrodny
OCSiAl Group
United States

1804 Embarcadero Rd., Suite 202, Palo Alto, California, 94303

Alexander E. Bezrodny



V. V. Kirienko
Institute of Semiconductor Physics
Russian Federation

13 Lavrent’ev Ave., Novosibirsk 630090, Russia

Viktor V. Kirienko



A. V. Dvurechenskii
Institute of Semiconductor Physics
Russian Federation

13 Lavrent’ev Ave., Novosibirsk 630090, Russia

Anatolii V. Dvurechenskii



References

1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, vol. 354, pp. 56—58. DOI: 10.1038/354056a0

2. Yosida Y., Oguro I. Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes. J. Appl. Phys., 1999, vol. 86, pp. 999—1003. DOI: 10.1021/la401264r

3. Takano T., Takenobu T., Iwasa Y. Enhancement of carrier hopping by doping in single walled carbon nanotube films. J. Phys. Soc. Jpn., 2008, vol. 77, pp. 124709—124713. DOI: 10.1143/JPSJ.77.124709

4. Skakalova V., Kaiser A. B., Osvath Z., Vertesy G., Biro L. P., Roth S. Ion irradiation effects on conduction in single-wall carbon nanotube networks. Appl. Phys. A: Mater. Sci. Process., 2008, vol. 90, pp. 597—602. DOI: 10.1007/s00339-007-4383-0

5. Benoit J. M., Corraze B., Chauvet O. Localization, coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites. Phys. Rev. B, 2002, vol. 65, pp. 241405—241408. DOI: 10.1103/PhysRevB.65.241405

6. McIntosh G. C., Kim G. T., Park J. G., Krstic V., Burghard M., Jhang S. H., Lee S. W., Roth S., Park Y. W. Orientation dependence of magneto-resistance behaviour in a carbon nanotube rope. Thin Solid Films, 2002, vol. 417, pp. 67—71. DOI: 10.1016/S0040-6090(02)00592-8

7. Hone J., Whitney M., Piskoti C., Zettl A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B, 1999, vol. 59, pp. 2514—2516. DOI: 10.1103/PhysRevB.59.R2514

8. Zhang J., Jiang D., Peng H.-X., Qin F. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon, 2013, vol. 63, pp. 125—132. DOI: 10.1016/j.carbon.2013.06.047

9. Chu H., Zhang Z., Liu Y., Leng J. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon, 2014, vol. 66, pp. 154—163. DOI: 10.1016/j.carbon.2013.08.053

10. Gross A. J., Holzingera M., Cosnier S. Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy and Environmental Science, 2018, vol. 11, pp. 1670—1687. DOI: 10.1039/C8EE00330K

11. Chen I.-W. P., Liang R., Zhao H., Wang B., Zhang C. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology, 2011, vol. 22, pp. 485708—485714. DOI: 10.1088/0957-4484/22/48/485708

12. Wenjun Ma, Li Song, Rong Yang, Taihua Zhang, Yuanchun Zhao, Lianfeng Sun, Yan Ren. Dongfang Liu, Lifeng Liu, Jun Shen, Zhengxing Zhang, Yanjuan Xiang, Weiya Zhou, SiShen Xie. Directly synthesized strong, highlyconducting, transparent single-walled carbon nanotube films. Nano Lett., 2007, vol. 7, no. 8, pp. 2307—2311. DOI: 10.1021/nl070915c

13. Wang D., Song P. C., Liu C. H., Wu W., Fan S. S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, vol. 19, pp. 075609—075614. DOI: 10.1088/0957-4484/19/7/075609

14. Zhao W., Tan H. T., Tan L. P., Fan S., Hng H. H., Boey Y. C. F., Beloborodov I., Yan Q. N-type carbon nanotubes/silver telluride nanohybridbuckypaper with a high-thermoelectric figure of merit. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 4940—4946. DOI: 10.1021/am4059167

15. Jia X., Chen Z., Suwarnasarn A., Rice L., Wang X., Sohn H., Zhang Q., Wu B. M., Wei F., Lu Y. High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ. Sci., 2012, no. 5, pp. 6845—6849. DOI: 10.1039/C2EE03110H

16. Baughman R. H., Cui C., Zakhidov A. A., Iqbal Z., Barisci J. N., Spinks G. M., Wallace G. G., Mazzoldi A., De Rossi D., Rinzler A. G., Jaschinski O., Roth S., Kertesz M. Carbon nanotube actuators. Science, 1999, vol. 284, no. 5418, pp. 1340—1344. DOI: 10.1126/science.284.5418.1340

17. Chen I-W. P., Liang Z., Wang B., Zhang C. Charge-induced asymmetrical displacement of an aligned carbon nanotube buckypaper actuator. Carbon, 2010, vol. 48, no. 4, pp. 1064—1069. DOI: 10.1016/j.carbon.2009.11.026

18. Rein M. D., Breuer O., Wagner H. D. Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices. Composites Science and Technology, 2011, vol. 71, no. 3, pp. 373—381. DOI: 10.1016/j.compscitech.2010.12.008

19. Zhang D., Ryu K., Liu X., Polikarpov E., Ly J., Tompson M. E., Zhou C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett., 2006, vol. 6, no. 9, pp. 1880—1886. DOI: 10.1021/nl0608543

20. Park J. G., Louis J., Cheng Q., Bao J., Smithyman J., Liang R., Wang B., Zhang C., Brooks J. S., Kramer L., Fanchasis P., Dorough D. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology, 2009, vol. 20, no. 41, pp. 415702—415708. DOI: 10.1088/0957-4484/20/41/415702

21. Han J.-H., Zhang H., Chen M.-J., Wang D., Liu Q., Wu Q.-L., Zhang Z. The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates. Carbon, 2015, vol. 94, pp. 101—113. DOI: 10.1016/j.carbon.2015.06.026

22. Zhang M., Fang S., Zakhidov A. A., Lee S. B., Aliev A. E., Williams C. D., Atkinson K. R., Baughman R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, vol. 309, no. 5738, pp. 1215—1219. DOI: 10.1126/science.1115311

23. Davies R. J., Riekel C., Koziol K. K., Vilatela J. J., Windle A. H. Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence. J. Appl. Cryst., 2009, vol. 42, pp. 1122—1128. DOI: 10.1107/S0021889809036280

24. Fischer J. E., Dai H., Thess A., Lee R., Hanjani N. M., Dehaas D. L., Smalley R. E. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B, 1997, vol. 55, no. 8, pp. 4921—4924. DOI: 10.1103/PhysRevB.55.R4921

25. Lee R. S., Kim H. J., Fischer J. E., Lefebvre J., Radosavljević M., Hone J., Johnson A. T. Transport properties of a potassium-doped single-wall carbon nanotube rope. Phys. Rev. B, 2000, vol. 61, no. 7, pp. 4526—4529. DOI: 10.1103/PhysRevB.61.4526

26. Behabtu N., Young C. C., Tsentalovich D. E., Kleinerman O., Wang X., Ma A. W. K., Bengio E. A., ter Waarbeek R. F., de Jong J. J., Hoogerwerf R. E., Fairchild S. B., Ferguson J. B., Maruyama B., Kono J., Talmon Y., Cohen Y., Otto M. J., Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, vol. 339, no. 6116, pp. 182—186. DOI: 10.1126/science.1228061

27. Ocsial. URL: https://ocsial.com/ru/tubbox/

28. Lee J., Lee D.-M., Kim Y.-K., Jeong H. S., Kim S. M. Significantly increased solubility of carbon nanotubes in superacid by oxidation and their assembly into high-performance fibers. Small, 2017, vol. 13, no. 38, pp. 1701131—1701138. DOI: 10.1002/smll.201701131

29. Bucossi A. R., Cress C. D., Schauerman C. M., Rossi J. E., Puchades I., Landi B. J. Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 49, pp. 27299—27305. DOI: 10.1021/acsami.5b08668

30. Ramesh S., Ericson L. M., Davis V. A., Saini R. K., Kittrell C., Pasquali M., Billups W. E., Adams W. W., Hauge R. H., Smalley R. E. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B, 2004, vol. 108, no. 26, pp. 8794—8798. DOI: 10.1021/jp036971t

31. Zhou W., Vavro J., Guthy C., Winey K. I., Fischer J. E., Ericson L. M., Ramesh S., Saini R., Davis V. A., Kittrell C., Pasquali M., Hauge R. H., Smalley R. E. Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport. J. Appl. Phys., 2004, vol. 95, no. 2, pp. 649—655. DOI: 10.1063/1.1627457

32. 32 Harutyunyan A. R., Chen G., Paronyan T. M., Pigos E. M., Kuznetsov O. A., Hewaparakrama K., Kim S. M., Zakharov D., Stach E. A., Sumanasekera G. U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 2009, vol. 326, no. 5949, pp. 116—120. DOI: 10.1126/science.1177599

33. Zhang X., Li Q., Tu Y., Li Y., Coulter J. Y., Zheng L., Zhao Y., Jia Q., Peterson D. E., Zhu Y. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small, 2007, vol. 3, no. 2, pp. 244—248. DOI: 10.1002/smll.200600368

34. Kaiser A. B., Düsberg G., Roth S. Heterogeneous model for conduction in carbon nanotubes. Phys. Rev. B, 1998, vol. 57, no. 3, pp. 1418—1421. DOI: 10.1103/PhysRevB.57.1418

35. Steinmetz J., Glerup M., Paillet M., Bernier P., Holzinger M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon, 2005, vol. 43, no. 11, pp. 2397—2400. DOI: 10.1016/j.carbon.2005.03.047

36. Skákalová V., Kaiser A. B., Woo Y.-S., Roth S. Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks. Phys. Rev. B, 2006, vol. 74, no. 8, pp. 085403—085412. DOI: 10.1103/PhysRevB.74.085403

37. Cambedouzou J., Sauvajol J.-L., Rahmani A., Flahaut E., Peigney A., Laurent C. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Phys. Rev. B, 2004, vol. 69, no. 23, pp. 235422—235427. DOI: 10.1103/PhysRevB.69.235422

38. Tsebro V. I., Tonkikh A. A., Rybkovskiy D. V., Obraztsova E. A., Kauppinen E. I., Obraztsova E. D. Phonon contribution to electrical resistance of acceptor-doped single-wall carbon nanotubes assembled into transparent films. Phys. Rev. B, 2016, vol. 94, no. 24, pp. 245438—24546. DOI: 10.1103/PhysRevB.94.245438

39. Kivelson S., Heeger A. J. Intrinsic conductivity of conducting polymers. Synth. Met., 1988, vol. 22, no. 4, pp. 371—384. DOI: 10.1016/0379-6779(88)90108-7

40. Sheng P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B, 1980 , vol. 21, no. 6, pp. 2180—2195. DOI: 10.1103/PhysRevB.21.2180


Review

For citations:


Galkov M.S., Stepina N.P., Predtechenskiy M.R., Bezrodny A.E., Kirienko V.V., Dvurechenskii A.V. Preparation and transport properties of oriented buckypapers with single walled carbon nanotubes. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):104-111. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-104-111

Views: 789


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)