Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Aharonov—Bohm oscillations and distributions of equilibrium current in open quantum dot and ring interferometer

https://doi.org/10.17073/1609-3577-2019-4-290-297

Abstract

Magnetotransport in submicron devices formed on the basis of GaAs/AlGaAs structures is simulated by the method of nonequilibrium Green functions. In the one-particle approximation, the influence of a perpendicular magnetic field on electron transmission through a quasi-one-dimensional quantum dot and the Aharonov—Bohm interferometer is considered. Two-terminal conductance and magnetic moment of the devices are calculated. Two-dimensional patterns of equilibrium (persistent) currents are obtained. The correlations between energy dependences of magnetic moment and conductance are considered. For the quasi-one-dimensional quantum dot, regular conductance oscillations similar to the ABOs were found at low magnetic fields (0.05—0.4 T). In the case of a ring interferometer, the contribution to the total equilibrium current and magnetic moment at a given energy can change sharply both in magnitude and in sign when the magnetic field changes within the same Aharonov—Bohm oscillation. The conductance through the interferometer is determined not by the number of propagating modes, but rather by the influence of triangular quantum dots at the entrances to the ring, causing back scattering. Period of calculated ABOs corresponds to that measured for these devices.

About the Authors

O. A. Tkachenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 13 Akad. Lavrent’eva Ave., Novosibirsk, 630090, Russia
Russian Federation
Olga A. Tkachenko: Cand. Sci. (Phys.-Math.), Senior Researcher


D. G. Baksheev
Novosibirsk State University, 1 Pirogova Str., Novosibirsk, 630090, Russia
Russian Federation
Dmitry G. Baksheev: Cand. Sci. (Phys.-Math.), Assistant Lecturer


V. A. Tkachenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 13 Akad. Lavrent’eva Ave., Novosibirsk, 630090, Russia; Novosibirsk State University, 1 Pirogova Str., Novosibirsk, 630090, Russia
Russian Federation
Vitaly A. Tkachenko: Cand. Sci. (Phys.-Math.), Senior Researcher


References

1. Bykov A. A., Kvon Z. D., Ol'shanetskii E. B., Litvin L. V., Nastaushev Yu. V., Mansurov V. G., Migal' V. P., Moshchenko S. P., Plyukhin V. G. Quasiballistic electronic interferometer. JETP Letters, 1993, vol. 57, no. 9, pp. 613—616.

2. Persson M., Pettersson J., von Sydow B., Lindelof P. E., Kristensen A., Berggren K. F. Conductance oscillations related to the eigenenergy spectrum of a quantum dot in weak magnetic fields. Phys. Rev. B, 1995, vol. 52, no. 12, pp. 8921—8933. DOI: 10.1103/PhysRevB.52.8921

3. Micolich A. P., See A. M., Scannell B. C., Marlow C. A., Martin T. P., Pilgrim I., Hamilton A. R., Linke H., Taylor R. P. Is it the boundaries or disorder that dominates electron transport in semiconductor ‘billiards’? Fortschr. Phys., 2013, vol. 61, no. 2–3, pp. 332—347. DOI: 10.1002/prop.201200081

4. Tkachenko O. A., Tkachenko V. A., Kvon Z. D., Latyshev A. V., Aseev A. L. Introscopy of quantum nanoelectronic devices. Nanotechnologies in Russia, 2010, vol. 5, no. 9–10, pp. 676—695. DOI: 10.1134/S1995078010090132

5. Tkachenko V. A., Tkachenko O. A., Kvon Z. D., Latyshev A. V., Aseev A. L. Introscopy in nano- and mesoscopic physics: single electronics and quantum ballistics. Optoelectronics, instrumentation and data processing, 2016, vol. 52, no. 5, pp. 518—528. DOI: 10.3103/S8756699016050149

6. Tkachenko O. A., Tkachenko V. A., Kvon Z. D., Sheglov D. V., Aseev A. L. Modeling of quantum transport and single-electron charging in GaAs/AlGaAs-nanostructures. In: Advances in Semiconductor Nanostructures. Growth, Characterization, Properties and Applications. Ed. by: A. V. Latyshev, A. V. Dvurechenskii, A. L. Aseev. Elsevier, 2017, ch. 6, pp. 131—155. DOI: 10.1016/B978-0-12-810512-2.00006-8

7. Tkachenko O. A., Tkachenko V. A., Baksheev D. G., Kvon Z. D., Portal J. C. Electrostatic potential, energy spectrum, and Fano resonances in a ballistic ring interferometer based on an AlGaAs/GaAs heterojunction. JETP Letters, 2000, vol. 71, no. 6, pp. 255—258. DOI: 10.1134/1.568328

8. Olshanetsky E. B., Cassé M., Kvon Z. D., Gusev G. M., Lit­vin L. V., Plotnikov A. V., Maude D. K., Portal J. C. Symmetric, gated, ballistic rings as tunable electron interferometers. Physica E, 2000, vol. 6, no. 1–4, pp. 322—326. DOI: 10.1016/S1386-9477(99)00160-5

9. Cassé M., Kvon Z. D., Gusev G. M., Olshanetskii E. B., Litvin L. V., Plotnikov A. V., Maude D. K., Portal J. C. Temperature dependence of the Aharonov-Bohm oscillations and the energy spectrum in a single-mode ballistic ring. Phys. Rev. B, 2000, vol. 62, no. 4, pp. 2624—2629. DOI: 10.1103/PhysRevB.62.2624

10. Liang C.-T., Simmons M. Y., Smith C. G., Kim G. H., Ritchie D. A., Pepper M. Experimental evidence for Coulomb charging effects in an open quantum dot at zero magnetic field. Phys. Rev. Lett., 1998, vol. 81, no. 16, pp. 3507—3510. DOI: 10.1103/PhysRevLett.81.3507

11. Liang C.-T., Simmons M. Y., Smith C. G., Kim G. H., Ritchie D. A., Pepper M. Multilayered gated lateral quantum dot devices. Appl. Phys. Lett., 2000, vol. 76, no. 9, pp. 1134—1136. DOI: 10.1063/1.125961

12. Baksheyev D. G., Tkachenko O. A., Tkachenko V. A. The role of intersubband mixing in single-electron charging of open quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 2000, vol. 6, no. 1–4, pp. 414—417. DOI: 10.1016/S1386-9477(99)00204-0

13. Tkachenko O. A., Tkachenko V. A., Baksheyev D. G., Liang C.-T., Simmons M. Y., Smith C. G., Ritchie D. A., Kim Gil-Ho, Pepper M. Coulomb charging effects in an open quantum dot device. J. Phys.: Condens. Matter., 2001, vol. 13, no. 42, pp. 9515—9534. DOI: 10.1088/0953-8984/13/42/312

14. Tkachenko V. A., Tkachenko O. A., Baksheyev D. G., Liang C.-T. Coulomb oscillations of the ballistic conductance in a quasi-one-dimensional quantum dot. JETP Letters, 2001, vol. 74, no. 4, pp. 209—212. DOI: 10.1134/1.1413551

15. Büttiker M., Imry Y., Landauer R. Josephson behavior in small normal one-dimensional rings. Phys. Lett. A, 1983, vol. 96, no. 7, pp. 365—367. DOI: 10.1016/0375-9601(83)90011-7

16. Büttiker M. Small normal-metal loop coupled to an electron reservoir. Phys. Rev. B, 1985, vol. 32, no. 3, pp. 1846—1849. DOI: 10.1103/PhysRevB.32.1846

17. Sivan U., Imry Y. de Haas-van Alphen and Aharonov-Bohm-type persistent current oscillations in singly connected quantum dots. Phys. Rev. Lett., 1988, vol. 61, no. 8, pp. 1001—1004. DOI: 10.1103/PhysRevLett.61.1001

18. Jayannavar A. M., Deo P. S. Persistent currents and conductance of a metal loop connected to electron reservoirs. Phys. Rev. B, 1994, vol. 49, no. 19, pp. 13685—13690. DOI: 10.1103/PhysRevB.49.13685

19. Fogler M. M., Levin E. I., Shklovskii B. I. Chemical potential and magnetization of a Coulomb island. Phys. Rev. B, 1994, vol. 49, no. 19, pp. 13767—13775. DOI: 10.1103/PhysRevB.49.13767

20. Tan W.-C., Inkson J. C. Magnetization, persistent currents, and their relation in quantum rings and dots. Phys. Rev. B, 1999, vol. 60, no. 8, pp. 5625—5635. DOI: 10.1103/PhysRevB.60.5626

21. Bremme L., Ihn T., Ensslin K. Magnetization of a two-dimensional electron gas and the role of one-dimensional edge currents. Phys. Rev. B, 1999, vol. 59, no. 11, pp. 7305—7307. DOI: 10.1103/PhysRevB.59.7305

22. Aldea A., Moldoveanu V., Nita M., Manolescu A., Gudmundsson V., Tanatar B. Orbital magnetization of single and double quantum dots in a tight-binding model. Phys. Rev. B, 2003, vol. 67, no. 3, p. 035324 (10pp). DOI: 10.1103/PhysRevB.67.035324

23. Mailly D., Chapelier C., Benoit A. Experimental observation of persistent currents in a GaAs-AlGaAs single loop. Phys. Rev. Lett., 1993, vol. 70, no. 13, pp. 2020—2023. DOI: 10.1103/PhysRevLett.70.2020

24. Rabaud W., Saminadayar L., Mailly D., Hasselbach K., Benoît A., Etienne B. Persistent Currents in mesoscopic connected rings. Phys. Rev. Lett., 2001, vol. 86, no. 14, pp. 3124—3127. DOI: 10.1103/PhysRevLett.86.3124

25. Schwarz M. P., Grundler D., Wilde M. A., Heyn Ch., Heitmann D. Magnetization of semiconductor quantum dots. J. Appl. Phys., 2002, vol. 91, no. 10, pp. 6875—6877. DOI: 10.1063/1.1450762

26. Schwarz M. P., Wilde M. A., Groth S., Grundler D., Heyn Ch., Heitmann D. Sawtoothlike de Haas—van Alphen oscillations of a two-dimensional electron system. Phys. Rev. B, 2002, vol. 65, no. 24, p. 245315 (9pp). DOI: 10.1103/PhysRevB.65.245315

27. Usher A., Elliott M. Magnetometry of low-dimensional electron and hole systems. J. Phys.: Condens. Matter., 2009, vol. 21, p. 103202 (31pp). DOI: 10.1088/0953-8984/21/10/103202

28. Cresti A., Farchioni R., Grosso G., Parravicini G. P. Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys. Rev. B, 2003, vol. 68, no. 7, p. 075306 (8pp.). DOI: 10.1103/PhysRevB.68.075306

29. Tkachenko O. A., Tkachenko V. A. Supercomputer modeling of semiconductor quantum nanosystems. Vychislitel’nyye metody i programmirovaniye = Numerical methods and programming, 2012, vol. 13, no. 1, pp. 253—262. (In Russ.)


Review

For citations:


Tkachenko O.A., Baksheev D.G., Tkachenko V.A. Aharonov—Bohm oscillations and distributions of equilibrium current in open quantum dot and ring interferometer. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(4):290-297. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-290-297

Views: 677


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)