Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Mathematical modeling of perspective structures of metal oxides

https://doi.org/10.17073/1609-3577-2019-4-268-271

Abstract

Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the high complexity of their obtaining. This makes it relevant to use computer modeling to predict the required characteristics of materials. Electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure-the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO2 (metals: Hf, Ce, Zr), Me2O3 (metals: Er, Nd, Sc, Mn, Tl) and Me3O4 (using Fe as an example) and a cubic symmetry type crystal lattice — structural types NaCl (rock salt), Fluorite, Bixbyite, Spinel accordingly. The paper describes the model of ion-atomic radii, which is widely used in the modeling of crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice, calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as input parameters for determining electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.

About the Author

P. A. Sechenykh
Federal Research Centre «Information and Control» of the Russian Academy of Sciences, 44 Vavilov Str., Moscow 119333, Russia; Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, 4, Moscow, 125993, Russia
Russian Federation
Polina A. Sechenykh: Junior Researcher (1), Senior Lecturer (2)


References

1. Crystal Lattice Structures. URL: https://homepage.univie.ac.at/michael.leitner/lattice/prototype.html (accessed: 02.11.2019).

2. Abgaryan K. K. Mnogomasshtabnoe modelirovanie v zadachakh strukturnogo materialovedeniya [Multiscale modeling in problems of structural materials science]. Moscow: MAKS Press, 2017, 284 p. (In Russ.)

3. Abgaryan K. K. Vychislitel’nye algoritmy v zadachakh matematicheskogo modelirovaniya ustoichivykh struktur kristallicheskikh materialov [Computational algorithms in problems of mathematical modeling of stable structures of crystalline materials]. Moscow: MAKS Press, 2017, 100 p. (In Russ.)

4. Shaskolskaya M. P. Kristallografiya [Crystallography]. Moscow: Vysshaya shkola, 1976, 390 p. (In Russ.)

5. Zagalskaya Yu. G., Litvinskaya G. P., Egorov-Tismen­ko Yu. K. Geometricheskaya kristallografiya [Geometric crystallography]. Moscow: Izd-vo MGU, 1986, 168 p. (In Russ.)

6. Belov N. V. Struktura ionnykh kristallov i metallicheskikh faz [Structure of ionic crystals and metallic phases]. Moscow: Izd-vo Akademii Nauk SSSR, 1947, 237 p. (In Russ.)

7. De Graef M., McHenry M. Structure of materials. Cambridge University Press, 2012, 767 p.

8. Solodovnikov S. F. Osnovnye terminy i ponyatiya strukturnoi kristallografii i kristallokhimii [Basic terms and concepts of structural crystallography and crystal chemistry]. Novosibirsk: INKh SO RAN, 2005, 113 p. (In Russ.)

9. Metropolis N., Ulam S. The Monte Carlo method. J. American Statistical Association, 1949, vol. 44, no. 247, pp. 335—341. DOI: 10.2307/2280232

10. Documentation on C #. URL: https://docs.microsoft.com/ru-ru/dotnet/csharp/ (access: 02.11.2019).

11. Hahn Th. International Tables for Crystallography. Vol. A: Space-group symmetry. Berlin; New York: Springer-Verlag, 2002, 938 p. DOI: 10.1107/97809553602060000100

12. Space Group Diagrams and Tables. URL: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm (accessed: 02.11.2019).

13. Abgaryan K. K., Sechenykh P. A., Gavrilov E. S. The object-relational approach to the development of a system of computer simulation of multiscale computational scheme of multilayer semiconductor nanostructures. Programmnaya inzheneriya, 2015, no. 8, pp. 9—17. (In Russ.)

14. Sechenykh P. A., Abgaryan K. K. Relational data storage model for information support of structural materials science problems. In: Proceedings of the Second Youth Scientific Conference «Problems of Modern Informatics». Moscow: FITs IU RAN, 2015, pp. 181—186. (In Russ.)

15. Abgaryan K. K., Bazhanov D. I., Sechenykh P. A. Computer modeling of the crystal structure and electronic properties of GaAs, GaP, GaAs0.75N0.25, GaAs0.25P0.75 (F43m). In: Proceedings of the First Russian Crystallographic Congress (RKK’2016). Saint Petersburg: NP-PRINT LLC, 2016, p. 52. (In Russ.)

16. Huheey J. E. Neorganicheskaya khimiya. Stroenie veshchestva i reaktsionnaya sposobnost’ [Inorganic chemistry. The structure of matter and reactivity]. Ed. by B. D. Stepina, R. A. Lidina. Moscow: Khimiya, 1987, 696 p. (In Russ.)

17. ChemSpider. URL: https://www.chemspider.com/ (accessed: 20.09.2019).

18. Crystallography Open Database. URL: http://www.crystallography.net/cod/ (accessed: 20.09.2019).

19. Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B, 1964, vol. 136, no. 3, pp. 864—871. DOI: 10.1103/PhysRev.136.B864

20. Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A, 1965, vol. 140, no. 4, pp. 1133—1138. DOI: 10.1103/PhysRev.140.A1133


Review

For citations:


Sechenykh P.A. Mathematical modeling of perspective structures of metal oxides. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(4):268-271. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-268-271

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)