Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Современное состояние и перспективы для перовскитных солнечных элементов: кристаллические структуры и образование тонких пленок, морфология, обработка, деградация, повышение стабильности углеродными нанотрубками

https://doi.org/10.17073/1609-3577-2017-3-

Аннотация

Рассмотрены фундаментальные проблемы современного состояния исследований в области органо-неорганических органогалогенидных перовскитов (ОГП) в качестве основы для создания солнечных ячеек с повышенной эффективностью. Приведены данные о разнообразии перовскитов и их основных свойствах. Дана хронология развития исследований в данном направлении – структурные аспекты ОГП-перовскитов, от самых первых двумерных до современных трехмерных перовскитов с формулой MAPbI3, а также важных технологических аспектов создания структуры гладких тонких пленок с использованием разнообразных методов, в частности, подбора растворителей, нанесения покрытий методами центрифугирования и погружения, вауумного осаждения,технологии катионного обмена, наноимпринта (в особенности, разносторонней роли полимеров). Проанализированы наиболее важные теоретические проблемы, в частности, электронная структура решетки, дефектно-примесные состояния в чистых и смешанных перовскитах, подавление электронно-дырочной рекомбинации, сверхбольшие времена жизни и диффузионные длины. Рассмотрены эффекты деградации, связанные с влажностью и фотооблучением, а также деградация металлических электродов на солнечных ячейках на основе ОГП. Продемонстрировано применение углеродных наноструктур – углеродных нанотрубок (УНТ) и графена – в качестве стабильных полупрозначных коллекторов заряда на поверхности ОГП-перовскитов на примере оригинальных результатов, полученных авторами.

Об авторах

Н. Ашуров
Science Centre of Chemistry and Physics of Polymers (National University of Tashkent). A.Kadiri str. 7b, Tashkent, Uzbekistan, 100128
Россия
Nigmat Ashurov


Б. Oksengendler
Science Centre of Chemistry and Physics of Polymers (National University of Tashkent). A.Kadiri str. 7b, Tashkent, Uzbekistan, 100128
Россия
Boris Oksengendler


Sergry Maksimov
Science Centre of Chemistry and Physics of Polymers (National University of Tashkent). A.Kadiri str. 7b, Tashkent, Uzbekistan, 100128
Россия
Sergry Maksimov


Sayyora Rashiodva
Science Centre of Chemistry and Physics of Polymers (National University of Tashkent). A.Kadiri str. 7b, Tashkent, Uzbekistan, 100128
Россия
Sayyora Rashiodva


А. Иштеев
National University of Science and Technology MISiS, Leninskiy prospect 4, Moscow, Russia, 119049
Россия
Artur Ishteev


Danila Saranin
National University of Science and Technology MISiS, Leninskiy prospect 4, Moscow, Russia, 119049
Россия
Danila Saranin


Igor Burmistrov
National University of Science and Technology MISiS, Leninskiy prospect 4, Moscow, Russia, 119049
Россия
Igor Burmistrov


Denis Kuznetsov
National University of Science and Technology MISiS, Leninskiy prospect 4, Moscow, Russia, 119049
Россия
Denis Kuznetsov


Anvar Zakhisov
Department of Physics, University of Texas at Dallas, Dallas.; 800 W Campbell Rd;. Richardson, Texas 75080
Соединённые Штаты Америки
Anvar Zakhisov


Список литературы

1. D.B. Mitzi. Solution-processed inorganic semiconductors. J. Mater. Chem., vol. 14 (2004), pp. 2355–2365. DOI: 10.1039/B403482A

2. D.B. Mitzi, K. Chondroudis, C.R. Kagan. Organic-inorganic electronics. J. Res. Dev., vol. 45(1) (2001), pp. 29–45. DOI: 10.1147/rd.451.0029

3. D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy. Containing (110)-oriented perovskite sheets. Science, vol. 267 (1995), pp. 1473–1476. DOI: 10.1126/science.267.5203.1473

4. D.B. Mitzi. Synthesis, structure, and properties of organic‐inorganic perovskites and related materials. Progress in Inorganic Chemistry, vol. 48 (2007), pp 1–121. DOI: 10.1002/9780470166499.ch1

5. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science, vol. 286 (1999), pp. 945–947. DOI: 10.1126/science.286.5441.945.

6. C.C. Stoumpos, C.D. Mallinkas, M.G. Kanatzidis. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem., vol. 52 (15) (2013), pp. 9019–9038. DOI: 10.1021/ic401215x

7. A. Kojima, M. Ikogami, K. Teshima, T. Miyasaka. Highly luminescent lead bromide perovskite nanoparticles synthesize with porous alumina media. Chem. Lett., vol. 41 (4) (2012), pp. 397–399. DOI: 10.1246/cl.2012.397

8. A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds. in Proc. 210th ECS Meeting (ECS, 2006), p. 397.

9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., vol. 131 (17) (2009), pp. 6050–6051. DOI: 10.1021/ja809598r.

10. J.H. Im, C.R. Lee, J.W. Park, N.G. Park. 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, vol. 3 (2011). pp. 4088–4093. DOI: 10.1039/C1NR10867K, Communication

11. I. Robel, V. Subramanian, M. Kuno, P. V Kamat. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J. Am. Chem. Soc., vol. 128 (2006), pp. 2385–2393. DOI: 10.1021/ja056494n

12. J.B. Sambur, T. Novet, B.A. Parkinson. Multiple Exciton Collection in a Sensitized Photovoltaic System. Science, vol. 330 (2010), pp. 63–66. DOI: 10.1126/science.1191462

13. A. Zaban, O.I. Mićić, B.A. Gregg, A.J. Nozik. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir, vol. 14 (1998), pp. 3153–3156. DOI: 10.1021/la9713863

14. P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots. J. Phys. Chem. B, vol. 110 (2006), pp. 25451–25454. DOI: 10.1021/jp064817b

15. S.J. Moon, Y. Itzhaik, J.-H. Yum, S.M. Zakeeruddin, G. Hodes, M. Grätzel. Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor. J. Phys. Chem. Lett., vol. 1 (2010), pp. 1524–1527. DOI: 10.1021/jz100308

16. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, N.-G. Park. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9 %. Sci. Rep., vol. 2 (2012), article number: 591. DOI: 10.1038/srep00591

17. L. Etgar, P. GaO, Z. Xue, Q. Peng, A.K. Chandirun, B. Liu, Md.K. Nazeeruddin, M. Grätzel. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc., vol. 134 (42) (2012), pp. 17396–17399. DOI: 10.1021/ja307789s

18. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, vol. 338 (2012), pp. 643–647. DOI: 10.1126/science.1228604

19. S. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leytens, L. Herz, A. Petrozza, H.J. Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, vol. 342 (2013), pp. 341–343. DOI: 10.1126/science.1243982.

20. J. Burschka, N. Pellet, S-J.Moon, K.H. Baker, P. GaO, M.K. Nazeeruddin, M. Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, vol. 499 (2013), pp. 316–319. DOI: 10.1038/nature12340

21. J. Burschka. High performance solid-state mesoscopic solar cells. Ph.D.Thesis. École Polytechnique Fédérale de Lausanne. Suisse, 2013. 145 p.

22. M. Liu, M.B. Johnston, H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, vol. 501 (2013), pp. 395–398. DOI: 10.1038/nature12509

23. Q. Chen, H. Zhou, Z. Hong, S. LuO, H.-Sh. Duan, H.-H. Wang, Y. Liu, G.-Li, Y. Yang. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc., vol. 136 (2) (2014), pp. 622–625. DOI: 10.1021/ja411509g

24. Y. Zhao, K. Zhu. Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. J. Mater. Chem. A, vol. 3 (17) (2015), pp. 9086–9091. DOI: 10.1039/C4TA05384B

25. J.T.W. Wang, J.M. Ball, E.M.Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Biqueret, H.J. Snaith, K.J. Nicholas. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett., vol. 14 (2) (2014), pp. 724–730. DOI: 10.1021/nl403997a

26. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci., vol. 7 (3) (2014), pp. 1142–1147. DOI: 10.1039/C3EE43707H.

27. S. Ryu, J.H. Noh, N.J. Jeon, Y. Chan Kim, W.S. Yang, J. Seo, S.I. Seok. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., vol. 7 (2014), pp. 2614–2618. DOI: 10.1039/C4EE00762J

28. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater., vol. 13 (2014), pp. 897–903. DOI: 10.1038/nmat4014

29. N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. Chem. Soc., vol. 136 (22) (2014), pp. 7837–7840. DOI: 10.1021/ja502824c.

30. H. Zhou, Q. Chen, G.Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science, vol. 345 (6196) (2014), pp. 542–546. DOI: 10.1126/science.1254050.

31. H.J. Snaith. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., vol. 4 (21) (2013), pp. 3623–3630. DOI: 10.1021/jz4020162

32. K. Leo. Perovskite photovoltaics: Signs of stability. Nature Nanotechnology, vol. 10 (2015), pp. 574–575. DOI: 10.1038/nnano.2015.139

33. J.M. Frost, K.T. Butler, F. Brivio, Ch.H. Hendon, M. van Schilfgaarde, A. Walsh. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett., vol. 14 (5) (2014), pp. 2584–2590. DOI: 10.1021/nl500390f

34. W.-J. Yin, T. Shi, Y. Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Mater., vol. 26 (2014), pp. 4653–4658. DOI: 10.1002/adma.201306281

35. B. Lee, Y. Chen, D. Fu, H.T. Yi, K. Czelen, H. Najafov, V. Podzorov. Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. Nature Mater., vol. 12 (2013), pp. 1125–1129. DOI: 10.1038/nmat3781

36. Chen, H.T. Yi, X. Wu, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov, A. Zakhidov, X.-Y. Zhu, V. Podzorov. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nature Communications, vol. 7 (2016), article number: 12253. DOI: 10.1038/ncomms12253

37. H. Wang, L. Valkunas, T. Cao, L. Whittaker-Brooks, G.R. Fleming. Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites. J. Phys. Chem. Lett., vol. 7 (16) (2016), pp. 3284–3289. DOI: 10.1021/acs.jpclett.6b01425

38. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater., vol. 26 (2014), pp. 1584–1589. DOI: 10.1002/adma.201305172

39. A. Pivrikas, H. Neugebauer, N.S. Sariciftci. Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells. IEEE J. of Selected topics in Quantum Electron., vol. 16 (6) (2010), pp. 1746–1758. DOI: 10.1109/JSTQE.2010.2044978

40. H.L. Welles. Uber die Casium- und Kalium-Bleihalogenide. Sheffield Scintific School, New Haven, Conn., 1893. DOI: 10.1002/zaac.18930030124

41. D. Weber. CH3NH3SnBr3-x (x = 0-3), a Sn(II)-System with the Cubic Perovskite Structure. Zeitschrift fur Naturfisch, vol. 33b (1978), pp. 862–865.

42. D. Weber. CH3NH3PbX3, a Pb(II)-System with the Cubic Perovskite Structure. Zeitschrift fur Naturfisch, vol. 33b (1978), pp. 1443–1445

43. D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy. Conducting Tin halides with a layered organic-based perovskite structure. Nature, vol. 369 (1994), pp. 467–469. DOI: 10.1038/369467a0

44. D.B. Mitzi. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. (2001), pp. 1–12. DOI: 10.1039/B007070J .

45. Z. Cheng, J. Lin. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Comm., vol. 12 (2010), pp. 2646–2662. DOI: 10.1039/C001929A

46. Y.Y. Li, C.K. Lin, G.L. Zheng, Z.Y. Cheng, H. You, W.D. Wang, J. Lin. Novel <110>-Oriented Organic–Inorganic Perovskite Compound Stabilized by N-(3-Aminopropyl)imidazole with Improved Optical Properties. Chem. Mater., vol. 18 (2006), pp. 3463–3469. DOI: 10.1021/cm060714u.

47. Y.Y. Li, G.L. Zheng, J. Lin. Synthesis, Structure, and Optical Properties of a Contorted <110>-Oriented Layered Hybrid Perovskite: C3H11SN3PbBr4. Eur. J. Inorg. Chem., vol. 10 (2008), pp.1689–1692. DOI: 10.1002/ejic.200700927

48. J. Zaleski, A. Pietraszko. Structure at 200 and 298 K and X-ray investigations of the phase transition at 242 K of [NH2(CH3)2]3Sb2Cl9 (DMACA). Acta Crystallogr., vol. B52 (1996), pp. 287–295. DOI: 10.1107/S0108768195010615

49. I.N. Burmistrov, D.V. Kuznetsov, A.G. Yudin, D.S. Muratov, S.I. Milyaeva, M.A. Kostitsyn, M.V. Gorshenkov. Analysis of the effect of preparation conditions for potassium polytitanates on their morphological properties. Refract. Ind. Ceram., vol. 52 (6) (2012), pp. 393–397. DOI: 10.1007/s11148-012-9437-y

50. F.S. Fedorov, A.S. Varezhnikov, I. Kiselev, V.V. Kolesnichenko, I.N. Burmistrov, M. Sommer, D. Fuchs, C. Kübel, A.V. Gorokhovsky, V.V. Sysoev. Potassium Polytitanategas-sensor study by Impedance Spectroscopy. Analytica Chimica Acta, vol. 897 (2015), pp. 81–86. DOI: 10.1016/j.aca.2015.09.029

51. Xiaoyan Gan, Ou Wang, Keyong Liu, Xiangjun Du, Liling Guo, Hanxing Liu. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, vol. 162 (2017), pp. 93–102. DOI: 10.1016/j.solmat.2016.12.047

52. B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi. Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater., vol. 27 (2015), pp. 5622–5632. DOI: 10.1021/acs.chemmater.5b01989

53. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc., vol. 137 (24) (2015), pp. 7843–7850. DOI: 10.1021/jacs.5b03796

54. D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci. Lead-free MA2CuClxBr4-x hybrid perovskites. Inorg. Chem., vol. 55 (2016), pp. 1044–1052. DOI: 10.1021/acs.inorgchem.5b01896

55. K. Yao, X. Wang, Y. Xu, F. Li, L. Zhou, Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater., vol. 28 (9) (2016), pp. 3131–3138. DOI: 10.1021/acs.chemmater.6b00711

56. Z. Xiao, W. Meng, B. Saparov, H.S. Duan, C. Wang, C. Feng, W.Q. Liao, W. Ke, D. Zhao, J. Wang. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density-functional theory study. J. Phys. Chem. Lett., vol. 7 (7) (2016), pp. 1213–1218. DOI: 10.1021/acs.jpclett.6b00248

57. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chemie, vol. 126 (42) (2014), pp. 11414–11417. DOI: 10.1002/ange.201406466

58. Pang. S., et.al. NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chem. Mater., vol. 26 (3) (2014), pp. 1485–1491. DOI: 10.1021/cm404006p

59. J.G. Bednorz, K.A. Muller. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys.B. Condens. Matter., vol. 64 (1986), pp. 189–193. DOI: 10.1007/BF01303701

60. M.A. Green, A. Ho-Baillie, H.J. Snaith. The emergence of perovskite solar cells Nature Photonics, vol. 8 (2014), pp. 506–514. DOI: 10.1038/nphoton.2014.134

61. V.M. Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften, vol. 14 (21) (1926), pp. 477–485. DOI: 10.1007/BF01507527

62. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, vol. 342 (2013), pp. 344–347. DOI: 10.1126/science.1243167

63. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam. The origin of high efficiency in low-temperaturesolution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., vol. 7 (2014), pp. 399–407. DOI: 10.1039/C3EE43161D

64. K. Tanaka, T. Takahashi, T. Kondo, K. Umeda, K. Ema, T. Umebayashi, K. Asai, K. Uchida, N. Miura. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Part I. Jpn. J. Appl. Phys., vol. 44 (2005), pp. 5923–5932. DOI: 10.1143/JJAP/44/5923

65. K. Tanaka, T. Takahoshi, T. Ban, T. Kando, K. Uchida, N. Miura. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, vol. 127 (9-10) (2003), pp. 619–623. DOI: 10.1016/S0038-1098(03)00566-0

66. Qianqian Lin, Ardalan Armin, Ravi Chandra Raju Nagiri, Paul L. Burn, Paul Meredith. Electro-optics of perovskite solar cells. Nature Photonics, vol. 9 (2015), pp. 106–112. DOI: 10.1038/nphoton.2014.284

67. H.-S.Kim, I. Mora-Sero, V. Gonzales-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun., vol. 4 (2013). Article number: 2242. DOI: 10.1038/ncomms3242

68. J. Tilchin, D.N. Dirin, G.I. Maikov, A. Sashchiuk, M.V. Kovalenko, E. Lifshitz. Hydrogen-like Wannier-Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite. ACS Nano, vol. 10 (6) (2016), pp. 6363–6371. DOI: 10.1021/acsnano.6b02734

69. Y. Kutes, L. Ye, Yu. Zhou, Sh. Pang, B.D. Huey, N.P. Padture. Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. J. Phys. Chem. Lett., vol. 5 (19) (2014), pp. 3335–3339. DOI: 10.1021/jz501697b

70. N. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Launzani, H.S. Snaith, A. Petrozza. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commiations, vol. 5 (2014), art. no. 3586. DOI: 10.1038/ncomms4586

71. G. Niu, X. Guo, L.Wang. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J. Mater. Chem. A, vol. 3 (17) (2015), pp. 8970–8980. DOI: 10.1039/C4TA04994B

72. C. Roiland, G. Trippe-Allard, K. Jemli, B. Alonso, J.-C. Ameline, R. Gautier, T. Bataille, L. Le Polles, E. Deleporte, J. Even, C. Katan. Multinuclear NMR as a tool for studying local order and dynamics in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites. Phys. Chem. Chem. Phys., vol. 18 (2016), pp. 27133–27142. DOI: 10.1039/C6CP02947G

73. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao. The Role of Chlorine in the Formation Process of «CH3NH3PbI3-xClx» Perovskite. Adv. Funct. Mater., vol. 24 (2014), pp. 7102–7108. DOI: 10.1002/adfm.201401872

74. T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C, vol. 118 (2013), pp. 16458–16462. DOI: 10.1021/jp411112k

75. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., vol. 7 (2014), pp. 982–988. DOI: 10.1039/C3EE43822H

76. N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed., vol. 53 (12) (2014), pp. 3151–3157. DOI: 10.1002/anie.201309361

77. T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grinsdebe, Y.M. Lam. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A, vol. 3 (17) (2014), pp. 8943–8969. DOI: 10.1039/C4TA05226a

78. M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun., vol. 49 (2013), pp. 11089–11091. DOI: 10.1039/C3CC46534A

79. D. Liu, T.L. Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperatur esolution processing techniques. Nature Photonics, vol. 8 (2014), pp. 133–138. DOI:10.1038/nphoton.2013.342

80. M. Graetzel, R.A.J. Janssen, D.B. Mitzi, E.H. Sargent. Materials interface engineering for solution-processed photovoltaics. Nature, vol. 488 (2012), pp. 304–312. DOI: 10.1038/nature11476

81. F.C. Krebs. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells., vol. 93 (4) (2009), pp. 394–412. DOI: 10.1016/j.solmat.2008.10.004

82. D.A.R. Barkhouse, O. Gunawan, T. Gotmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt: Res. Appl., vol. 20 (1) (2012), pp. 6–11. DOI: 10.1002/pip.1160

83. T.K. Todorov, O. Gunawan, T. Gokmen, D.B. Mitzi. Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2 % efficient solar cell. Prog. Photovolt: Res. Appl., vol. 21 (1) (2013), pp. 82–87. DOI: 10.1002/pip.1253

84. H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, vol. 6 (2014), pp. 6679–6683. DOI: 10.1039/C4NR00130C

85. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, L. Spiccia. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed., vol. 53 (2014), pp. 9898–9903. DOI:10.1002/anie.201405334

86. F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.-B. Cheng. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, vol. 10 (2014), pp. 10–18. DOI: 10.1016/j.nanoen.2014.08.015

87. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yanb, S.-H. Wei. Halide perovskite materials for solar cells: a theoretical review. A Theoretical Review. J. Mater. Chem. A, vol. 3 (17) (2015), pp. 8926–8942. DOI: 10.1039/c4ta05033a

88. W.-J. Yin, T. Shi, Y. Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett., vol. 104 (6) (2014), article number: 063903. DOI: 10.1063/1.4864778

89. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang. «Solvent Annealing» Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater., vol. 17 (10) (2007), pp. 1636–1644. DOI: 10.1002/adfm.200600624

90. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater., vol. 26 (37) (2014), pp. 6503–6509. DOI: 10.1002/adma.201401685

91. F. Di Giacomo, S. Razza, F. Matteocci, A. D'Epifanio, S. Licoccia, T.M. Brown, A. Di Carlo. High efficiency CH3NH3PbI(3–x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources, vol. 251 (2014), pp. 152–156. DOI: 10.1016/j.jpowsour.2013.11.053

92. S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A.K.-Y. Jen. Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 8 (10) (2014), pp. 10640–10654. DOI: 10.1021/nn5041922

93. M.H. Du. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A, vol. 2 (2014), pp. 9091–9098. DOI: 10.1039/C4TA01198H

94. E. Mosconi, E. Ronca, F. De Angelis. First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. J. Phys. Chem. Lett., vol. 5 (2014), pp. 2619–2625. DOI: 10.1021/jz501127k

95. J. Seo, S. Park, Y.Ch. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok. Benefits of Very Thin PCBM and LiF Layer for Solution-Processed P-I-N Perovskite Solar Cells. Energy Environ. Sci., vol. 7 (8) (2014), pp. 2642–2646. DOI: 10.1039/C4EE01216J

96. J.D. Gale, A.L. Rohl. The General Utility Lattice Program (GULP). Mol. Simul., vol. 29 (2003), pp. 291–341. DOI: 10.1080/0892702031000104887

97. D.O. Scanlon, Сh.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, С.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, Th.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol. Band alignment of rutile and anatase TiO2. Nature Mater., vol. 12 (2013), pp. 798–801. DOI: 10.1038/nmat3697

98. A. Walsh, K.T. Butler. Prediction of Electron Energies in Metal Oxides. Acc. Chem. Res., vol. 47 (2014), pp. 364–372. DOI: 10.1021/ar400115x

99. R. Brivio, А.В. Walker, A. Walsh. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater., vol. 1 (4) (2013), 042111. DOI: 10.1063/1.4824147

100. F. Brivio, K.T. Butler, A. Walsh, M. van Schilfgaarde. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B: Condens. Matter Mater. Phys., vol. 89 (2014), 155204. DOI:10.1103/PhysRevB.89.155204

101. I. Bordello, G. Cantele, D. Ninno. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. В, vol. 77 (2008), 235214. DOI: 10.1103/PhysRevB.77.235214

102. W.J. Yin, Y.L. Wu, S.H. Wei, R. Noun, M.M. Al-Jassim, Y.F. Yan. Engineering Grain Boundaries in Cu2 ZnSnSe4 for Better Cell Performance: A First-Principle Study. Adv. Energy Mater., vol. 4 (2014), 1300712. DOI: 10.1002/aenm.201300712

103. E. Mosconi, A. Amat, Md.K. Nazeeruddin, M. Grätzel, F. De Angelis. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. Phys. Chem. C, vol. 117 (27) (2013), pp. 13902–13913. DOI: 10.1021/jp4048659

104. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani,G. Gigli, F. De Angelis, R. Mosca. MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater., vol. 25 (2013), pp. 4613–4618. DOI: 10.1021/cm402919x

105. V. Roiati, E. Mosconi, A. Listorti, S. Colella, G. Gigli, F. De Angelis. Stark Effect in Perovskite/TiO2 Solar Cells: Evidence of Local Interfacial Order. Nano Lett., vol. 14 (2014), pp. 2168–2174. DOI: 10.1021/nl500544c

106. С. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F. De Angelis. The Raman Spectrum of the H3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experimen. Phys. Chem. Lett., vol. 5 (2014), pp. 279–284. DOI: 10.1021/jz402589q

107. P. Umari, E. Mosconi, F. De Angelis. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep., vol. 4 (2014), 4467. DOI: 10.1038/srep04467

108. F. De Angelis, Ace. Chem. Res., 2014, DOI: 10.102 l/ar500089n, Article ASAP.

109. A. Amat, E. Mosconi, E. Ronca, С. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F. De Angelis. Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting. Nano Lett., vol. 14 (2014), pp. 3608–3616. DOI:10.1021/nl5012992

110. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi, F. De Angelis. Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. Phys. Chem. Lett., vol. 5 (2014), pp. 2662–2669. DOI: 10.1021/jz501373f

111. J. Even, L. Pedesseau, С Katan. Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites. Phys. Chem. C, vol. 118 (2014), pp. 11566–11572. DOI: 10.1021/jp503337a

112. J. Even, L. Pedesseau, J.-M. Jancu, С Katan. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. Phys. Chem. Lett., vol. 4 (2013), pp. 2999–3005. DOI: 10.1021/jz401532q

113. J. Even, L. Pedesseau, J.-M. Jancu and C. Katan, DFT and k  p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi RRL, vol. 8 (1), 2014, pp. 31–35. DOI: 10.1002/pssr.201308183

114. J. Even, L. Pedesseau, С. Katan. Understanding Quantum Confinement of Charge Carriersin Layered 2D Hybrid Perovskites. ChemPhysChem., vol. 15 (17) (2014), pp. 3733–3741. DOI: 10.1002/cphc.201402428.

115. J. Even, L. Pedesseau, E. Tea, S. Almosni, A. Rolland, С Robert, J.-M. Jancu, С. Cornet, С. Katan, J.-F. Guillemoles, O. Durand. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures. Int. J. Photoenergy, 2014, 2014, 649408. DOI: 10.1155/2014/649408

116. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci., vol. 6 (13) (2013), pp. 1739–1743. DOI: 10.1039/C3EE40810H

117. A. Baumann, K. Tvingstedt, M.C. Heiber, S. Väth, C. Momblona, H.J. Bolink, V. Dyakonov. Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Mater., vol. 2 (8) (2014), art. no. 081501. DOI: 10.1063/1.4885255

118. B.L. Oksengendler, M.B. Marasulov, N.R. Ashurov. Fundamental'nye i prikladnye voprosy fiziki. Mezhdunarodn. konf. [Fundamental and applied problems of physics. International Conference]. Tashkent: FTI ANRUz, 2015 (In Russ.)

119. L. Onsager. Initial Recombination of Ions. Phys. Rev., vol. 54 (8) (1938), 554.

120. Hummel, W. Schmidt. Rad. Res. Revs. vol. 5 (1974), 199.

121. J.J. Thomson. Recombination of gaseous ions, the chemical combination of gases, and monomolecular reactions. Phil. Mag., Ser. 6, vol. 47 (278) (1924), pp. 337–378. DOI: 10.1080/14786442408634372

122. V.L. Bonch-Bruevich, S.G. Kalashnikov. Fizika poluprovodnikov [Physics of semiconductors]. Moscow: Nauka, 1977. (In Russ.)

123. R. Resta. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys., vol. 66 (3) (1994), pp. 899–915. DOI: 10.1103/RevModPhys.66.899

124. R. D. King-Smith, D. Vanderbilt. Theory of polarization of crystalline solids. Phys. Rev. В, vol. 47 (3) (1993), pp. 1651–1654. DOI: 10.1103/PhysRevB.47.1651

125. S. Dall’Olio, R. Dovesi, R. Resta. Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO3. Phys. Rev. В, vol. 56 (16) (1997), pp. 10105– 10114. DOI: 10.1103/PhysRevB.56.10105

126. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, vol. 503 (2013), p. 509–512. DOI: 10.1038/nature12622

127. S.В. Zhang, S.-H. Wei, A. Zunger, H. Katayama-Yoshida. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. В, vol. 57 (1998), 9642. DOI: 10.1103/PhysRevB.57.9642

128. C. Persson, A. Zunger. Anomalous Grain Boundary Physics in Polycrystalline CuInSe2: The Existence of a Hole Barrier. Phys. Rev. Lett., vol. 91 (2003), 266401. DOI: 10.1103/PhysRevLett.91.266401

129. Y. Zhao, K. Zhu. Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. vol. 50 (2014), pp. 1605–1607. DOI: 10.1039/C3CC48522F

130. N. Agmon. The Grotthuss mechanism. Chem. Phys. Lett., vol. 244 (5–6) (1995), pp. 456–462. DOI: 10.1016/0009-2614(95)00905-J

131. J. Schoonman. Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem. Chem. Phys. Lett., vol. 619 (2015), pp. 193–195. DOI:10.1016/j.cplett.2014.11.063

132. B.L. Oksengendler, O.B. Ismailova, M.B. MarasulovI. Z. Urolov. On the degradation mechanism of functioning solar cells based on organic-inorganic perovskites. Appl. Solar Energy, vol. 50 (4) (2014), pp. 255–259. DOI: 10.3103/S0003701X14040100

133. H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang. Anomalous Hysteresis in Perovskite Solar Cells. Phys. Chem. Lett., vol. 5 (2014), pp. 1511–1515. DOI: 10.1021/jz500113x

134. Dzh. Zaiman. Printsipy teorii tverdogo tela [Principles of solid state theory]. Moscow: Mir, 1966. (In Russ.)

135. J. Piprek. Semiconductor Optoelectronic Devices. Introduction to Physics and Simulations. Amsterdam: Academic Press, 2003.

136. H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur. Use of Carbon Nanotubes (CNTs) with Polymers in Solar Cells. Molecules, vol. 19 (11) (2014), pp. 17329–17344. DOI: 10.3390/molecules191117329

137. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, U. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano, vol. 8 (5) (2014), pp. 4730–4739. DOI: 10.1021/nn500526t

138. R. Ulbricht, S.B. Lee, X. Jiang, K. Inoue, M. Zhang, Sh. Fang, R.H. Baughman, A.A. Zakhidov. Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Solar Energy Materials and Solar Cells, vol. 91 (5) (2007), pp. 416–419. DOI: 10.1016/j.solmat.2006.10.002

139. A.B. Cook, J.D. Yuen, J.W. Micheli, A.G. Nasibulin, A. Zakhidov. Ambient Method for the Production of an Ionically Gated Carbon Nanotube Common Cathode in Tandem Organic Solar Cells. J. Vis. Exp., 93 (2014), e52380. DOI: 10.3791/52380


Для цитирования:


Ашуров Н., Oksengendler Б., Maksimov S., Rashiodva S., Иштеев А., Saranin D., Burmistrov I., Kuznetsov D., Zakhisov A. Современное состояние и перспективы для перовскитных солнечных элементов: кристаллические структуры и образование тонких пленок, морфология, обработка, деградация, повышение стабильности углеродными нанотрубками. Известия высших учебных заведений. Материалы электронной техники. 2017;20(3). https://doi.org/10.17073/1609-3577-2017-3-

Просмотров: 62


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)