Современное состояние и перспективы развития технологии органогалогенидных перовскитных солнечных ячеек: кристаллическая структура и формирование тонких пленок, морфология, обработка, деградация и повышение стабильности с использованием углеродных нанотрубок
https://doi.org/10.17073/1609-3577-2017-3-153-193
Аннотация
Об авторах
Н. Р. АшуровУзбекистан
Научно-Исследовательский Центр Химии и Физики Полимеров,
ул. А. Кадыри, д. 7б, Ташкент, 100128
Ашуров Нигмат Рустамович
Б. Л. Оксенгендлер
Узбекистан
Научно-Исследовательский Центр Химии и Физики Полимеров,
ул. А. Кадыри, д. 7б, Ташкент, 100128
Оксенгендлер Борис Леонидович
С. Е. Максимов
Узбекистан
Научно-Исследовательский Центр Химии и Физики Полимеров,
ул. А. Кадыри, д. 7б, Ташкент, 100128
Максимов Сергей Евлантиевич
С. Ш. Рашидова
Узбекистан
Научно-Исследовательский Центр Химии и Физики Полимеров,
ул. А. Кадыри, д. 7б, Ташкент, 100128
Рашидова Сайёра Шарафовна
А. Р. Иштеев
Россия
Нaучно образовательный центр (НОЦ) «Энергоэффективность»,
Ленинский просп., д. 4, Москва, 119049
Иштеев Артур Рустэмович
Д. С. Саранин
Россия
Нaучно образовательный центр (НОЦ) «Энергоэффективность»,
Ленинский просп., д. 4, Москва, 119049
Данила Сергеевич Саранин
И. Н. Бурмистров
Россия
Нaучно образовательный центр (НОЦ) «Энергоэффективность»,
Ленинский просп., д. 4, Москва, 119049
Игорь Николаевич Бурмистров
Д. В. Кузнецов
Россия
Нaучно образовательный центр (НОЦ) «Энергоэффективность»,
Ленинский просп., д. 4, Москва, 119049
Кузнецов Денис Валерьевич
А. А. Захидов
Соединённые Штаты Америки
Кафедра Физики,
800 Вест Кемпбелл роуд, Ричардсон, Техас, 75080
Анвар Абдулахадович Захидов
Список литературы
1. Mitzi D. B. Solution-processed inorganic semiconductors // J. Mater. Chem. 2004. V. 14. P. 2355—2365. DOI: 10.1039/B403482A
2. Mitzi D. B., Chondroudis K., Kagan C. R. Organic-inorganic electronics // J. Res. Dev. 2001. V. 45, N 1. P. 29—45. DOI: 10.1147/rd.451.0029
3. Mitzi D. B., Wang S., Feild C. A., Chess C. A., Guloy A. M. Containing (110)-oriented perovskite sheets // Science. 1995. V. 267. P. 1473—1476. DOI: 10.1126/science.267.5203.1473
4. Mitzi D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials // Progress in Inorganic Chemistry. 2007. V. 48. P. 1—121. DOI: 10.1002/9780470166499.ch1
5. Kagan C. R., Mitzi D. B., Dimitrakopoulos C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors // Science. 1999. V. 286. P. 945—947. DOI: 10.1126/science.286.5441.945
6. Stoumpos C. C., Mallinkas C. D., Kanatzidis M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties // Inorg. Chem. 2013. V. 52, N 15. P. 9019—9038. DOI: 10.1021/ic401215x
7. Kojima A., Ikogami M., Teshima K., Miyasaka T. Highly luminescent lead bromide perovskite nanoparticles synthesize with porous alumina media // Chem. Lett. 2012. V. 41, N 4. P. 397—399. DOI: 10.1246/cl.2012.397
8. Kojima A., Teshima K., Miyasaka T., Shirai Y. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds. In: Proc. 210th ECS Meeting, 2006, p. 397.
9. Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells // J. Am. Chem. Soc. 2009. V. 131, N 17. P. 6050—6051. DOI: 10.1021/ja809598r
10. Im J. H., Lee C. R., Park J. W., Park N. G. 6.5 % efficient perovskite quantum-dot-sensitized solar cell // Nanoscale. 2011. V. 3. P. 4088—4093. DOI: 10.1039/C1NR10867K
11. Robel I., Subramanian V., Kuno M., Kamat P.V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films // J. Am. Chem. Soc. 2006. V. 128. P. 2385—2393. DOI: 10.1021/ja056494n
12. Sambur J. B., Novet T., Parkinson B. A. Multiple Exciton Collection in a Sensitized Photovoltaic System // Science. 2010. V. 330. P. 63—66. DOI: 10.1126/science.1191462
13. Zaban A., Mićić O. I., Gregg B. A., Nozik A. J. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots // Langmuir. 1998. V. 14. P. 3153—3156. DOI: 10.1021/la9713863
14. Yu P., Zhu K., Norman A. G., Ferrere S., Frank A. J., Nozik A. J. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots // J. Phys. Chem. B. 2006. V. 110. P. 25451—25454. DOI: 10.1021/jp064817b
15. Moon S. J., Itzhaik Y., Yum J.-H., Zakeeruddin S. M., Hodes G., Grätzel M. Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor // J. Phys. Chem. Lett. 2010. V. 1. P. 1524—1527. DOI: 10.1021/jz100308
16. Kim H.-S., Lee C.-R., Im J.-H., Lee K.-B., Moehl T., Marchioro A., Moon S.-J., Humphry-Baker R., Yum J.-H., Moser J. E., Gratzel M., Park N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9 % // Sci. Rep., 2012. V. 2. P. 591. DOI: 10.1038/srep00591
17. Etgar L., Gao P., Xue Z., Peng Q., Chandirun A. K., Liu B., Nazeeruddin Md. K., Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells // J. Am. Chem. Soc. 2012. V. 134, N 42. P. 17396—17399. DOI: 10.1021/ja307789s
18. Lee M. M., Teuscher J., Miyasaka T., Murakami T. N., Snaith H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites // Science. 2012. V. 338. P. 643—647. DOI: 10.1126/science.1228604
19. Stranks S., Eperon G. E., Grancini G., Menelaou C., Alcocer M. J. P., Leytens T., Herz L., Petrozza A., Snaith H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber // Science. 2013. V. 342. P. 341—343. DOI: 10.1126/science.1243982
20. Burschka J., Pellet N., Moon S.-J., Baker K. H., Gao P., Nazeeruddin M. K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells // Nature. 2013. V. 499. P. 316—319. DOI: 10.1038/nature12340
21. Burschka J. High performance solid-state mesoscopic solar cells. Ph.D. Thesis. École Polytechnique Fédérale de Lausanne. Suisse, 2013. 145 p.
22. Liu M., Johnston M. B., Snaith H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition // Nature. 2013. V. 501. P. 395—398. DOI: 10.1038/nature12509
23. Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process // J. Am. Chem. Soc. 2014. V. 136, N 2. P. 622—625. DOI: 10.1021/ja411509g
24. Zhao Y., Zhu K. Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite // J. Mater. Chem. A. 2015. V. 3, N 17. P. 9086—9091. DOI: 10.1039/C4TA05384B
25. Wang J. T. W., Ball J. M., Barea E. M., Abate A., Alexander-Webber J. A., Huang J., Saliba M., Mora-Sero I., Biqueret J., Snaith H. J., Nicholas K. J. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2Nanocomposites in Thin Film Perovskite Solar Cells // Nano Lett. 2014. V. 14, N 2. P. 724—730. DOI: 10.1021/nl403997a
26. Wojciechowski K., Saliba M., Leijtens T., Abate A., Snaith H. J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency // Energy Environ. Sci. 2014. V. 7, N 3. P. 1142—1147. DOI: 10.1039/C3EE43707H
27. Seungchan Ryu, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Woon Seok Yang, Jangwon Seoa, Sang Il Seok. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor // Energy Environ. Sci. 2014. V. 7. P. 2614—2618. DOI: 10.1039/C4EE00762J
28. Jeon N. J., Noh J. H., Kim Y. C., Yang W. S., Ryu S., Seok S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells // Nature Mater. 2014. V. 13. P. 897—903. DOI: 10.1038/nmat4014
29. Jeon N. J., Lee H. G., Kim Y. C., Seo J., Noh J. H., Lee J., Seok S. I. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells // Chem. Soc. 2014. V. 136, N 22. P. 7837—7840. DOI: 10.1021/ja502824c
30. Zhou H., Chen Q., Li G., Luo S., Song T. B., Duan H. S., Hong Z., You J., Liu Y., Yang Y. Photovoltaics. Interface engineering of highly efficient perovskite solar cells // Science. 2014. V. 345. P. 542—546. DOI: 10.1126/science.1254050
31. Snaith H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells // J. Phys. Chem. Lett. 2013. V. 4, N 21. P. 3623—3630. DOI: 10.1021/jz4020162
32. Leo K. Perovskite photovoltaics: Signs of stability // Nature Nanotechnology. 2015. V. 10. P. 574—575. DOI: 10.1038/nnano.2015.139
33. Frost J. M., Butler K. T., Brivio F., Hendon Ch. H., van Schilfgaarde M., Walsh A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells // Nano Lett. 2014. V. 14, N 5. P. 2584—2590. DOI: 10.1021/nl500390f
34. Yin W.-J., Shi T., Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance // Advanced Mater. 2014. V. 26. P. 4653—4658. DOI: 10.1002/adma.201306281
35. Lee B., Chen Y., Fu D., Yi H. T., Czelen K., Najafov H., Podzorov V. Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors // Nature Mater. 2013. V. 12. P. 1125—1129. DOI: 10.1038/nmat3781
36. Chen Y., Yi H. T., Wu X., Haroldson R., Gartstein Y. N., Rodionov Y. I., Tikhonov K. S., Zakhidov A., Zhu X.-Y., Podzorov V. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements // Nature Communications. 2016. V. 7. P. 12253. DOI: 10.1038/ncomms12253
37. Wang H., Valkunas L., Cao T., Whittaker-Brooks L., Fleming G. R. Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites // J. Phys. Chem. Lett. 2016. V. 7, N 16. P. 3284—3289. DOI: 10.1021/acs.jpclett.6b01425
38. Wehrenfennig C., Eperon G. E., Johnston M. B., Snaith H. J., Herz L. M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites // Adv. Mater. 2014. V. 26. P. 1584—1589. DOI: 10.1002/adma.201305172
39. Pivrikas A., Neugebauer H., Sariciftci N. S. Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells // IEEE J. of Selected topics in Quantum Electron. 2010. V. 16, N 6. P. 1746—1758. DOI: 10.1109/JSTQE.2010.2044978
40. Welles H. L. Uber die Casium- und Kalium-Bleihalogenide. New Haven (Conn., USA): Sheffield Scintific School, 1893. DOI: 10.1002/zaac.18930030124
41. Weber D. CH3NH3SnBr3-x (x = 0-3), a Sn(II)-System with the Cubic Perovskite Structure // Zeitschrift für Naturforschung B. 1978. V. 33, N 8. P. 862—865. DOI: 10.1515/znb-1978-0809
42. Weber D. CH3NH3PbX3, a Pb(II)-System with the Cubic Perovskite Structure // Zeitschrift für Naturforschung B. 1978. V. 33, N 12. P. 1443—1445. DOI: 10.1515/znb-1978-1214
43. Mitzi D. B., Feild C. A., Harrison W. T. A., Guloy A. M. Conducting Tin halides with a layered organic-based perovskite structure // Nature. 1994. V. 369. P. 467—469. DOI: 10.1038/369467a0
44. Mitzi D. B. Templating and structural engineering in organic-inorganic perovskites // J. Chem. Soc., Dalton Trans. 2001. P. 1—12. DOI: 10.1039/B007070J
45. Cheng Z., Lin J. Layered organic—inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering // Cryst. Eng. Comm. 2010. V. 12. P. 2646—2662. DOI: 10.1039/C001929A
46. Li Y. Y., Lin C. K., Zheng G. L., Cheng Z. Y., You H., Wang W. D., Lin J. Novel <110>-Oriented Organic-Inorganic Perovskite Compound Stabilized by N-(3-Aminopropyl)imidazole with Improved Optical Properties // Chem. Mater. 2006. V. 18. P. 3463—3469. DOI: 10.1021/cm060714u
47. Li Y. Y., Zheng G. L., Lin J. Synthesis, Structure, and Optical Properties of a Contorted <110>-Oriented Layered Hybrid Perovskite: C3H11SN3PbBr4 // Eur. J. Inorg. Chem. 2008. V. 10. P.1689—1692. DOI: 10.1002/ejic.200700927
48. Zaleski J., Pietraszko A. Structure at 200 and 298 K and X-ray investigations of the phase transition at 242 K of [NH2(CH3)2]3Sb2Cl9 (DMACA) // Acta Crystallogr. 1996. V. B52. P. 287—295. DOI: 10.1107/S0108768195010615
49. Burmistrov I. N., Kuznetsov D. V., Yudin A. G., Muratov D. S., Milyaeva S. I., Kostitsyn M. A., Gorshenkov M. V. Analysis of the effect of preparation conditions for potassium polytitanates on their morphological properties // Refract. Ind. Ceram. 2012. V. 52, N 6. P. 393—397. DOI: 10.1007/s11148-012-9437-y
50. Fedorov F. S., Varezhnikov A. S., Kiselev I., Kolesnichenko V. V., Burmistrov I. N., Sommer M., Fuchs D., Kübel C., Gorokhovsky A. V., Sysoev V. V. Potassium Polytitanategas-sensor study by Impedance Spectroscopy // Analytica Chimica Acta. 2015. V. 897. P. 81—86. DOI: 10.1016/j.aca.2015.09.029
51. Xiaoyan Gan, Ou Wang, Keyong Liu, Xiangjun Du, Liling Guo, Hanxing Liu. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells // Solar Energy Materials and Solar Cells. 2017. V. 162. P. 93—102. DOI: 10.1016/j.solmat.2016.12.047
52. Saparov B., Hong F., Sun J. P., Duan H. S., Meng W., Cameron S., Hill I. G., Yan Y., Mitzi D. B. Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor // Chem. Mater. 2015. V. 27. P. 5622—5632. DOI: 10.1021/acs.chemmater.5b01989
53. Cao D. H., Stoumpos C. C., Farha O. K., Hupp J. T., Kanatzidis M. G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications // J. Am. Chem. Soc. 2015. V. 137, N 24. P. 7843—7850. DOI: 10.1021/jacs.5b03796
54. Cortecchia D., Dewi H. A., Yin J., Bruno A., Chen S., Baikie T., Boix P. P., Grätzel M., Mhaisalkar S., Soci C. Lead-free MA2CuClxBr4-x hybrid perovskites // Inorg. Chem. 2016. V. 55. P. 1044—1052. DOI: 10.1021/acs.inorgchem.5b01896
55. Yao K., Wang X., Xu Y., Li F., Zhou L. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell // Chem. Mater. 2016. V. 28, N 9. P. 3131—3138. DOI: 10.1021/acs.chemmater.6b00711
56. Xiao Z., Meng W., Saparov B., Duan H. S., Wang C., Feng C., Liao W. Q., Ke W., Zhao D., Wang J. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density-functional theory study // J. Phys. Chem. Lett. 2016. V. 7, N 7. P. 1213—1218. DOI: 10.1021/acs.jpclett.6b00248
57. Smith I. C., Hoke E. T., Solis-Ibarra D., McGehee M. D., Karunadasa H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability // Angew. Chemie. 2014. V. 126, N 42. P. 11414—11417. DOI: 10.1002/ange.201406466
58. Shuping Pang, Hao Hu, Jiliang Zhang, Siliu Lv, Yaming Yu, Feng Wei, Tianshi Qin, Hongxia Xu, Zhihong Liu, Guanglei Cui. NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells // Chem. Mater. 2014. V. 26, N 3. P. 1485—1491. DOI: 10.1021/cm404006p
59. Bednorz J. G., Muller K. A. Possible high Tc superconductivity in the Ba—La—Cu—O system // Z. Phys.B. Condens. Matter. 1986. V. 64. P. 189—193. DOI: 10.1007/BF01303701
60. Green M. A., Ho-Baillie A., Snaith H. J. The emergence of perovskite solar cells // Nature Photonics. 2014. V. 8. P. 506—514. DOI: 10.1038/nphoton.2014.134
61. Goldschmidt V. M.. Die Gesetze der Krystallochemie// Naturwissenschaften. 1926. V. 14, N 21. P. 477—485. DOI: 10.1007/BF01507527
62. Xing G., Mathews N., Sun S., Lim S. S., Lam Y. M., Gratzel M., Mhaisalkar S., Sum T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. P. 344—347. DOI: 10.1126/science.1243167
63. Sun S., Salim T., Mathews N., Duchamp M., Boothroyd C., Xing G., Sum T. C., Lam Y. M. The origin of high efficiency in low-temperaturesolution-processable bilayer organometal halide hybrid solar cells // Energy Environ. Sci. 2014. V. 7. P. 399—407. DOI: 10.1039/C3EE43161D
64. Tanaka K., Takahashi T., Kondo T., Umeda K., Ema K., Umebayashi T., Asai K., Uchida K., Miura N. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Part I // Jpn. J. Appl. Phys., 2005. V. 44. P. 5923—5932. DOI: 10.1143/JJAP/44/5923
65. Tanaka K., Takahoshi T., Ban T., Kando T., Uchida K., Miura N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 // Solid State Communications. 2003. V. 127, N 9—10. P. 619—623. DOI: 10.1016/S0038-1098(03)00566-0
66. Qianqian Lin, Ardalan Armin, Ravi Chandra Raju Nagiri, Paul L. Burn, Paul Meredith. Electro-optics of perovskite solar cells // Nature Photonics. 2015. V. 9. P. 106—112. DOI: 10.1038/nphoton.2014.284
67. Kim H.-S., Mora-Sero I., Gonzales-Pedro V., Fabregat-Santiago F., Juarez-Perez E. J., Park N.-G., Bisquert J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells // Nat. Commun. 2013. V. 4. P. 2242. DOI: 10.1038/ncomms3242
68. Tilchin J., Dirin D. N., Maikov G. I., Sashchiuk A., Kovalenko M. V., Lifshitz E. Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite // ACS Nano, 2016. V. 10, N 6. P. 6363—6371. DOI: 10.1021/acsnano.6b02734
69. Kutes Y., Ye L., Zhou Yu., Pang Sh., Huey B. D., Padture N. P. Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films // J. Phys. Chem. Lett. 2014. V. 5, N 19. P. 3335—3339. DOI: 10.1021/jz501697b
70. D’Innocenzo N., Grancini G., Alcocer M. J. P., Kandada A. R. S., Stranks S. D., Lee M. M., Launzani G., Snaith H. S., Petrozza A.. Excitons versus free charges in organo-lead tri-halide perovskites // Nature Commiations. 2014. V. 5. P. 3586. DOI: 10.1038/ncomms4586
71. Niu G., Guo X., Wang L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells // J. Mater. Chem. A. 2015. V. 3, N 17. P. 8970—8980. DOI: 10.1039/C4TA04994B
72. Roiland C., Trippe-Allard G., Jemli K., Alonso B., Ameline J.-C., Gautier R., Bataille T., Le Polles L., Deleporte E., Even J., Katan C. Multinuclear NMR as a tool for studying local order and dynamics in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites // Phys. Chem. Chem. Phys. 2016. V. 18. P. 27133—27142. DOI: 10.1039/C6CP02947G
73. Yu H., Wang F., Xie F., Li W., Chen J., Zhao N. The role of chlorine in the formation process of «CH3NH3PbI3-xClx» perovskite // Adv. Funct. Mater. 2014. V. 24. P. 7102—7108. DOI: 10.1002/adfm.201401872
74. Koh T. M., Fu K., Fang Y., Chen S., Sum T. C., Mathews N., Mhaisalkar S. G., Boix P. P., Baikie T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells // J. Phys. Chem. C. 2013. V. 118. P. 16458—16462. DOI: 10.1021/jp411112k
75. Eperon G. E., Stranks S. D., Menelaou C., Johnston M. B., Herz L. M., Snaith H. J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells // Energy Environ. Sci. 2014. V. 7. P. 982—988. DOI: 10.1039/C3EE43822H
76. Pellet N., Gao P., Gregori G., Yang T.-Y., Nazeeruddin M. K., Maier J., Grätzel M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting // Angew. Chem. Int. Ed. 2014. V. 53, N 12. P. 3151—3157. DOI: 10.1002/anie.201309361
77. Salim T., Sun S., Abe Y., Krishna A., Grinsdebe A. C., Lam Y. M. Perovskite-based solar cells: impact of morphology and device architecture on device performance // J. Mater. Chem. A. 2014. V. 3, N 17. P. 8943—8969. DOI: 10.1039/C4TA05226a
78. Kumar M. H., Yantara N., Dharani S., Graetzel M., Mhaisalkar S., Boix P. P., Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells // Chem. Commun. 2013. V. 49. P. 11089—11091. DOI: 10.1039/C3CC46534A
79. Liu D., Kelly T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperatur esolution processing techniques // Nature Photonics. 2014. V. 8. P. 133—138. DOI:10.1038/nphoton.2013.342
80. Graetzel M., Janssen R. A. J., Mitzi D. B., Sargent E. H. Materials interface engineering for solution-processed photovoltaics // Nature. 2012. V. 488. P. 304—312. DOI: 10.1038/nature11476
81. Krebs F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques // Sol. Energy Mater. Sol. Cells. 2009. V. 93, N 4. P. 394—412. DOI: 10.1016/j.solmat.2008.10.004
82. Barkhouse D. A. R., Gunawan O., Gotmen T., Todorov T. K., Mitzi D. B. Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se,S)4 solar cell // Prog. Photovolt: Res. Appl. 2012. V. 20, N 1. P. 6—11. DOI: 10.1002/pip.1160
83. Todorov T. K., Gunawan O., Gokmen T., Mitzi D. B. Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2 % efficient solar cell // Prog. Photovolt: Res. Appl. 2013. V. 21, N 1. P. 82—87. DOI: 10.1002/pip.1253
84. Kim H.-B., Choi H., Jeong J., Kim S., Walker B., Song S., Kim J. Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells // Nanoscale. 2014. V. 6. P. 6679—6683. DOI: 10.1039/C4NR00130C
85. Xiao M., Huang F., Huang W., Dkhissi Y., Zhu Y., Etheridge J., Gray-Weale A., Bach U., Cheng Y.-B., Spiccia L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells // Angew. Chem., Int. Ed. 2014. V. 53. P. 9898—9903. DOI: 10.1002/anie.201405334
86. Huang F., Dkhissi Y., Huang W., Xiao M., Benesperi I., Rubanov S., Zhu Y., Lin X., Jiang L., Zhou Y., Gray-Weale A., Etheridge J., McNeill C. R., Caruso R. A., Bach U., Spiccia L., Cheng Y.-B. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells // Nano Energy. 2014. V. 10. P. 10—18. DOI: 10.1016/j.nanoen.2014.08.015
87. Yin W.-J., Yang J.-H., Kang J., Yanb Y., Wei S.-H. Halide perovskite materials for solar cells: a theoretical review // A Theoretical Review. J. Mater. Chem. A. 2015. V. 3, N 17. P. 8926—8942. DOI: 10.1039/c4ta05033a
88. Yin W.-J., Shi T., Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber // Appl. Phys. Lett. 2014. V. 104, N 6. P. 063903. DOI: 10.1063/1.4864778
89. Li G., Yao Y., Yang H., Shrotriya V., Yang G., Yang Y. «Solvent annealing» effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes // Adv. Funct. Mater. 2007. V. 17, N 10. P. 1636—1644. DOI: 10.1002/adfm.200600624
90. Xiao Z., Dong Q., Bi C., Shao Y., Yuan Y., Huang J. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement // Adv. Mater. 2014. V. 26, N 37. P. 6503—6509. DOI: 10.1002/adma.201401685
91. Di Giacomo F., Razza S., Matteocci F., D'Epifanio A., Licoccia S., Brown T. M., Di Carlo A. High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer // J. Power Sources. 2014. V. 251. P. 152—156. DOI: 10.1016/j.jpowsour.2013.11.053
92. Williams S. T., Zuo F., Chueh C.-C., Liao C.-Y., Liang P.-W., Jen A. K.-Y. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films // ACS Nano. 2014. V. 8, N 10. P. 10640—10654. DOI: 10.1021/nn5041922
93. Du M. H. Efficient carrier transport in halide perovskites: theoretical perspectives // J. Mater. Chem. A. 2014. V. 2. P. 9091—9098. DOI: 10.1039/C4TA01198H
94. Mosconi E., Ronca E., De Angelis F. First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine // J. Phys. Chem. Lett. 2014. V. 5. P. 2619—2625. DOI: 10.1021/jz501127k
95. Seo J., Park S., Kim Y. Ch., Jeon N. J., Noh J. H., Yoon S. C., Seok S. I. Benefits of Very Thin PCBM and LiF Layer for Solution-Processed P-I-N Perovskite Solar Cells // Energy Environ. Sci. 2014. V. 7, N 8. P. 2642—2646. DOI: 10.1039/C4EE01216J
96. Gale J. D., Rohl A. L. The General Utility Lattice Program (GULP) // Mol. Simul. 2003. V. 29. P. 291—341. DOI: 10.1080/0892702031000104887
97. Scanlon D. O., Dunnill Сh. W., Buckeridge J., Shevlin S. A., Logsdail A. J., Woodley S. M., Catlow С. R. A., Powell M. J., Palgrave R. G., Parkin I. P., Watson G. W., Keal Th. W., Sherwood P., Walsh A., Sokol A. A. Band alignment of rutile and anatase TiO2 // Nature Mater. 2013. V. 12. P. 798—801. DOI: 10.1038/nmat3697
98. Walsh A., Butler K. T. Prediction of Electron Energies in Metal Oxides // Acc. Chem. Res. 2014. V. 47. P. 364—372. DOI: 10.1021/ar400115x
99. Brivio R., Walker А. В., Walsh A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles // APL Mater. 2013. V. 1, N 4. P. 042111. DOI: 10.1063/1.4824147
100. Brivio F., Butler K. T., Walsh A., van Schilfgaarde M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 89. P. 155204. DOI:10.1103/PhysRevB.89.155204
101. Bordello I., Cantele G., Ninno D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides // Phys. Rev. В. 2008. V. 77. P. 235214. DOI: 10.1103/PhysRevB.77.235214
102. Yin W. J., Wu Y. L., Wei S. H., Noun R., Al-Jassim M. M., Yan Y. F. Engineering grain boundaries in Cu2 ZnSnSe4 for better cell performance: a first-principle study // Adv. Energy Mater. 2014. V. 4. P. 1300712. DOI: 10.1002/aenm.201300712
103. Mosconi E., Amat A., Nazeeruddin Md. K., Grätzel M., De Angelis F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications // Phys. Chem. C. 2013. V. 117, N 27. P. 13902—13913. DOI: 10.1021/jp4048659
104. Colella S., Mosconi E., Fedeli P., Listorti A., Gazza F., Orlandi F., Ferro P., Besagni T., Rizzo A., Calestani G., Gigli G., De Angelis F., Mosca R. MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties // Chem. Mater. 2013. V. 25. P. 4613—4618. DOI: 10.1021/cm402919x
105. Roiati V., Mosconi E., Listorti A., Colella S., Gigli G., De Angelis F. Stark Effect in Perovskite/TiO2 Solar Cells: Evidence of Local Interfacial Order // Nano Lett. 2014. V. 14. P. 2168—2174. DOI: 10.1021/nl500544c
106. Quarti С., Grancini G., Mosconi E., Bruno P., Ball J. M., Lee M. M., Snaith H. J., Petrozza A., De Angelis F. The Raman Spectrum of the H3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experimen /// Phys. Chem. Lett. 2014. V. 5. P. 279—284. DOI: 10.1021/jz402589q
107. Umari P., Mosconi E., De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications // Sci. Rep. 2014. V. 4. P. 4467. DOI: 10.1038/srep04467
108. De Angelis F. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells // Ace. Chem. Res. 2014. V. 47, N 11. P. 3349—3360. DOI: 10.1021/ar500089n
109. Amat A., Mosconi E., Ronca E., Quarti С., Umari P., Nazeeruddin M. K., Gratzel M., De Angelis F. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting // Nano Lett. 2014. V. 14. P. 3608—3616. DOI:10.1021/nl5012992
110. Gottesman R., Haltzi E., Gouda L., Tirosh S., Bouhadana Y., Zaban A., Mosconi E., De Angelis F. Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions // Phys. Chem. Lett. 2014. V. 5. P. 2662—2669. DOI: 10.1021/jz501373f
111. Even J., Pedesseau L., Katan С. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites // Phys. Chem. C. 2014. V. 118. P. 11566—11572. DOI: 10.1021/jp503337a
112. Even J., Pedesseau L., Jancu J.-M., Katan С. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications // Phys. Chem. Lett. 2013. V. 4. P. 2999—3005. DOI: 10.1021/jz401532q
113. Even J., Pedesseau L., Jancu J.-M., Katan C. DFT and k p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells // Phys. Status Solidi RRL. 2014. V. 8, N 1. P. 31—35. DOI: 10.1002/pssr.201308183
114. Even J., Pedesseau L., Katan С. Understanding Quantum Confinement of Charge Carriersin Layered 2D Hybrid Perovskites // ChemPhysChem. 2014. V. 15, N 17. P. 3733—3741. DOI: 10.1002/cphc.201402428.
115. Even J., Pedesseau L., Tea E., Almosni S., Rolland A., Robert С., Jancu J.-M., Cornet С., Katan С., Guillemoles J.-F., Durand O. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures // Int. J. Photoenergy. 2014. V. 2014. P. 649408. DOI: 10.1155/2014/649408
116. Ball J. M., Lee M. M., Hey A., Snaith H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells // Energy Environ. Sci. 2013. V. 6, N 13. P. 1739—1743. DOI: 10.1039/C3EE40810H
117. Baumann A., Tvingstedt K., Heiber M. C., Väth S., Momblona C., Bolink H. J., Dyakonov V. Persistent photovoltage in methylammonium lead iodide perovskite solar cells // APL Mater. 2014. V. 2, N 8. P. 081501. DOI: 10.1063/1.4885255
118. Оксенгендлер Б. Л., Марасулов М. В., Ашуров Н. Р. Рекомбинационная динамика в солнечных элементах на основе перовскита (CH3NH3)PbI3 // Международная конференция «Фундаментальные и прикладные вопросы физики». Ташкент: ФТИ АНРУз, 2015. C. 101—103.
119. Onsager L. Initial Recombination of Ions // Phys. Rev. 1938. V. 54, N 8. P. 554—557. DOI: 10.1103/PhysRev.54.554
120. Hummel A., Schmidt W. F. Ionization of dielectric liquids by high-energy radiation studied by means of electrical conductivity methods // Rad. Res. Rev. 1974. V. 5. P. 199—300.
121. Thomson J. J. Recombination of gaseous ions, the chemical combination of gases, and monomolecular reactions // Phil. Mag. Ser. 6. 1924. V. 47, N 278. P. 337—378. DOI: 10.1080/14786442408634372
122. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. Москва, Наука, 1977.
123. Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach // Rev. Mod. Phys. 1994. V. 66, N 3. P. 899—915. DOI: 10.1103/RevModPhys.66.899
124. King-Smith R. D., Vanderbilt D. Theory of polarization of crystalline solids // Phys. Rev. В. 1993. V. 47, N 3. P. 1651—1654. DOI: 10.1103/PhysRevB.47.1651
125. Dall’Olio S., Dovesi R., Resta R. Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO3 // Phys. Rev. В. 1997. V. 56, N 16. P. 10105—10114. DOI: 10.1103/PhysRevB.56.10105
126. Grinberg I., West D. V., Torres M., Gou G., Stein D. M., Wu L., Chen G., Gallo E. M., Akbashev A. R., Davies P. K., Spanier J. E., Rappe A. M. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials // Nature. 2013. V. 503. P. 509—512. DOI: 10.1038/nature12622
127. Zhang S. В., Wei S.-H., Zunger A., Katayama-Yoshida H.. Defect physics of the CuInSe2 chalcopyrite semiconductor // Phys. Rev. В. 1998. V. 57. P. 9642. DOI: 10.1103/PhysRevB.57.9642
128. Persson C., Zunger A. Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier // Phys. Rev. Lett. 2003. V. 91. P. 266401. DOI: 10.1103/PhysRevLett.91.266401
129. Zhao Y., Zhu K. Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia // Chem. Commun. 2014. V. 50. P. 1605—1607. DOI: 10.1039/C3CC48522F
130. Agmon N. The Grotthuss mechanism // Chem. Phys. Lett. 1995. V. 244, N 5–6. P. 456—462. DOI: 10.1016/0009-2614(95)00905-J
131. Schoonman J. Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem // Chem. Phys. Lett. 2015. V. 619. P. 193—195. DOI:10.1016/j.cplett.2014.11.063
132. Oksengendler B. L., Ismailova O. B., MarasulovI M. B., Urolov Z. On the degradation mechanism of functioning solar cells based on organic-inorganic perovskites // Appl. Solar Energy. 2014. V. 50, N 4. P. 255—259. DOI: 10.3103/S0003701X14040100
133. Snaith H. J., Abate A., Ball J. M., Eperon G. E., Leijtens T., Noel N. K., Stranks S. D., Wang J. T.-W., Wojciechowski K., Zhang W. Anomalous hysteresis in perovskite solar cells // Phys. Chem. Lett. 2014. V. 5. P. 1511—1515. DOI: 10.1021/jz500113x
134. Займан Дж. Принципы теории твердого тела. М.: Мир, 1966. 478 c.
135. Piprek J. Semiconductor Optoelectronic Devices. Introduction to Physics and Simulations. Amsterdam: Academic Press, 2003.
136. Alturaif H. A., ALOthman Z. A., Shapter J. G., Wabaidur S. M. Use of carbon nanotubes (CNTs) with polymers in solar cells // Molecules. 2014. V. 19, N 11. P. 17329—17344. DOI: 10.3390/molecules191117329
137. Tan K. W., Moore D. T., Saliba M., Sai H., Estroff L. A., Hanrath T., Snaith H. J., Wiesner U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells // ACS Nano. 2014. V. 8, N 5. P. 4730—4739. DOI: 10.1021/nn500526t
138. Ulbricht R., Lee S. B., Jiang X., Inoue K., Zhang M., Fang Sh., Baughman R. H., Zakhidov A. A. Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells // Solar Energy Materials and Solar Cells. 2007. V. 91, N 5. P. 416—419. DOI: 10.1016/j.solmat.2006.10.002
139. Cook A. B., Yuen J. D., Micheli J. W., Nasibulin A. G., Zakhidov A. Ambient method for the production of an ionically gated carbon nanotube common cathode in tandem organic solar cells // J. Vis. Exp. 2014. V. 93. P. e52380. DOI: 10.3791/52380
Рецензия
Для цитирования:
Ашуров Н.Р., Оксенгендлер Б.Л., Максимов С.Е., Рашидова С.Ш., Иштеев А.Р., Саранин Д.С., Бурмистров И.Н., Кузнецов Д.В., Захидов А.А. Современное состояние и перспективы развития технологии органогалогенидных перовскитных солнечных ячеек: кристаллическая структура и формирование тонких пленок, морфология, обработка, деградация и повышение стабильности с использованием углеродных нанотрубок. Известия высших учебных заведений. Материалы электронной техники. 2017;20(3):153-193. https://doi.org/10.17073/1609-3577-2017-3-153-193
For citation:
Ashurov N., Oksengendler B.L., Maksimov S.E., Rashiodva S., Ishteev A.R., Saranin D.S., Burmistrov I.N., Kuznetsov D.V., Zakhisov A.A. Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(3):153-193. (In Russ.) https://doi.org/10.17073/1609-3577-2017-3-153-193