Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Technology for thermostimulated diagnostics of anisotropy and optical axes of crystals

https://doi.org/10.17073/1609-3577-2020-2-99-108

Abstract

To implement the technology of thermally stimulated diagnostics of anisotropy and optical axes of crystals, the sample is thermostated at a temperature not exceeding the melting point, an electric field not exceeding the breakdown field is applied to the sample, polarization is produced for a time greater than the relaxation time at this temperature. After that, without disconnecting the electric field, cooling to the temperature of liquid nitrogen is performed, then the field is switched off, the sample is linearly heated to a temperature above the polarization temperature and the obtained thermally stimulated depolarization (TSD) spectra taken along and perpendicular to the optical axis of the sixth order C6 crystal are examined. When comparing the obtained spectra, the presence of anisotropy is determined, and the exact direction of the optical axes is determined by the magnitude and presence of the TSD maxima.

About the Authors

V. M. Timokhin
Admiral Ushakov State Maritime University, Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, 15 Butlerova Str., Moscow 117342
Russian Federation

Viktor M. Timokhin: Cand. Sci. (Phys.-Math.), Assistant Professor, Professor of RAE



V. M. Garmash
National University of Science and Technology MISiS, 4 Leninsky Prospekt, Moscow 119049
Russian Federation

Vladimir M. Garmash: Dr. Sci. (Eng.), Professor



V. A. Tedzhetov
Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, 15 Butlerova Str., Moscow 117342
Russian Federation

Valentin A. Tedzhetov: Leading Engineer-Programmer



References

1. Bucci C. Ionic thermocurrents in alkali halide crystals containing substitutional beryllium ions. Phys. Rev., 1967, vol. 164, no. 3, pp. 1200. DOI: 10.1103/PhysRev.164.1200

2. Bucci C., Fieschi R. Ionic thermoconductivity. Method for the investigation of polarization in insulators. Phys. Rev. Lett., 1964, vol. 12, no. 1, pp. 16—19. DOI: 10.1103/PhysRevLett.12.16

3. Johary G. P., Jones S. J. Study of the low-temperature “transition” in ice Ih by thermally stimulated depolarization measurements. J. Chem. Phys., 1975, vol. 62, no. 10, pp. 4213—4223. DOI: 10.1063/1.430303

4. Takei I., Maeno N. Dielectric properties of single crystals of HC1-doped ice. J. Chem. Phys., 1984, vol. 81, no. 12, pp. 6186—6190. DOI: 10.1063/1.447573

5. Gorokhovatsky Yu. А. Osnovy termodepolyarizatsionnogo analiza [Fundamentals of thermodepolarization analysis]. Moscow: Nauka,1981, 173 p. (In Russ.)

6. Pat. 2348045 (RF). Mnogofunktsional’noe ustroistvo dlya issledovaniya fiziko-tekhnicheskikh kharakteristik poluprovodnikov, dielektrikov i elektroizolyatsionnykh materialov [Multifunctional device for research of physical and technical characteristics of semiconductors, dielectrics and electrical insulating materials] / V. M. Timokhin, 2009. (In Russ.)

7. Pat. 2442972 (RF). Sposob opredeleniya polozheniya opticheskoi osi fazovoi anizotropnoi kristallicheskoi plastinki λ/4 [Method for determining the position of the optical axis of the phase anisotropic crystal plate λ/4]. O. Yu. Pikul, 2012. (In Russ.)

8. Certificate of authorship 737822 (USSR). Sposob opredeleniya vida defektov, ikh kolichestva, energii aktivatsii, vremeni relaksatsii, aktivatsionnykh obemov defektov kristallicheskoi reshetki dielektrikov i poluprovodnikov i ustroistvo dlya ego realizatsii [Method for determining the type of defects, their number, activation energy, relaxation time, activation volumes of crystal lattice defects in dielectrics and semiconductors and a device for its implementation] / V. I. Bulakh, V. A. Mironov, M. P. Tonkonogov, 1980. (In Russ.)

9. Pat. 2347216 (RF). Sposob opredeleniya temperatury poyavleniya tunnel’nogo effekta v dielektrikakh i elektroizolyatsionnykh materialakh [Method for determining the temperature of the tunnel effect in dielectrics and electrical insulation materials] /

10. V. M. Timokhin, 2009. (In Russ.)

11. Timokhin V. M. Tunnel effect in widezone crystals with proton conductivity. J. Nano and Electronic Phys., 2014, vol. 6, no. 3, pp. 03048 (3pp).

12. Timokhin V. M. Fizika dielektrikov. Termoaktivatsionnaya i dielektricheskaya spektroskopiya kristallicheskikh materialov. Protonnyi transport [Physics of dielectrics. Thermal activation and dielectric spectroscopy of crystalline materials. Proton transport]. Moscow: Izdatel’skiy dom MISiS, 2013, 258 p. (In Russ.)

13. Bhallа A. S. Low temperature puroelectric properties of α-LiIO3 single crystals. J. Appl. Phys., 1984, vol. 55, no. 4, pp. 1229—1230. DOI: 10.1063/1.333170

14. Timokhin V. M., Garmash V. M., Tedzhetov V. A. Spectral diagnostics of vibrational centers in crystals with hydrogen bonds. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2019, vol. 22, no. 1, pp. 35—44. (In Russ.). DOI: 10.17073/1609-3577-2019-1-35-44

15. Timokhin V. M. Garmash V. M., Tedzhetov V. A. Infrared spectroscopy and tunneling of protons in crystals with hydrogen bonds. Optics and Spectroscopy, 2017, vol. 122, no. 6, pp. 889—895. DOI: 10.1134/S0030400X17060224

16. Tedzhetov V. A., Podkopaev A. V., Sysoev A. A. Study of the energy band structure of Lu2SiO5 : Ce3+ single crystals by thermally stimulated luminescence method. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, pp. 012044. DOI: 10.1088/1757-899X/525/1/012044

17. Blistanov A. A. Kristally kvantovoi i nelineinoi optiki [Crystals for quantum and nonlinear optics]. Moscow: MISiS, 2000, 432 p. (In Russ.)

18. Fillaux Fr. Proton transfer in the KHCO3 and acid crystals: a quantum view. J. Molecular Structure, 2007, vol. 844–845, pp. 308—318. DOI: 10.1016/j.molstruc.2007.05.046

19. Plyusnina I. I. Infrakrasnye spektry silikatov [Infrared spectra of silicates]. Moscow: MGU, 1967, 190 p. (In Russ.)

20. Yaroslavtsev A. B. Proton conductivity of inorganic hydrates. Russ. Chem. Rev., 1994, vol. 63, no. 5, pp. 429—435. DOI: 10.1070/RC1994v063n05ABEH000095

21. Ivanov Yu. N., Sukhovsky A. A., Aleksandrova I. P., Totz J., Michel D. The mechanism of proton conductivity in the crystals of NH4SeO4. Fizika tverdogo tela, 2002, vol. 44, no. 6, pp. 1032—1038. (In Russ.)

22. Timokhin V. M. The mechanism of dielectric relaxation and proton conductivity in α-LiIO3 nanostructure. Russ. Phys. J., 2009, vol. 52, no. 3, pp. 269—274.

23. Pat. 2566389 (RF). Termostimulirovannyi sposob diagnostiki anizotropii opticheskikh osei kristallov [Thermally stimulated current method of diagnosis of the anisotropy of the optical axes of the crystals]. V. M. Timokhin, 2015. (In Russ.)

24. Timokhin V. M., Garmash V. M., Tarasov V. P. NMR spectra and translational diffusion of protons in crystals with hydrogen bonds. Phys. Solid State, 2015, vol. 57, no. 7, pp. 1314—1317. DOI: 10.1134/S1063783415070331


Review

For citations:


Timokhin V.M., Garmash V.M., Tedzhetov V.A. Technology for thermostimulated diagnostics of anisotropy and optical axes of crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(2):99-108. (In Russ.) https://doi.org/10.17073/1609-3577-2020-2-99-108

Views: 785


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)