Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Electrical conductivity of YBa2Cu3O7-δ single crystals under conditions of anionic ordering in Cu(1)O1-δ layers

https://doi.org/10.17073/1609-3577-2020-1-71-77

Abstract

The influence of thermocycling annealing processes on the oxygen ordering degree (order parameter) in theYBa2Cu3O7-δ single crystals have been studied. It was determined that an increase in the critical temperature of the onset of the transition to the superconducting state during step annealing procedures is consistent with decrease of the σсаb parameter. This fact indicates the redistribution of the electronic density between the Cu(2)O2 and Cu(1)O1-d structurally-inhomogeneous planes, due to the formation of the oxygen long-range ordering in the O(4)—Cu(1)—O(4) linear groups along the (b) crystal structure axis of the unit cell, and removal of the oxygen defects in the square nets of the Cu(2)O2 planes. The existence of a critical value of the conductivity anisotropy σс/σаb, below which its behavior does not correlate with the change of Тс, has been proved. In this case, the increase of Тс and the orthorhombic distortion of the crystal structure at the isothermal annealing processes occur due to the amplification of the «interlayer» interaction between the Cu(2)О2 and Cu(1)О1-δ planes. As a result, the contribution of the Cu(1)О1-δ chain layers in the electronstate density on the Fermi level increases. These layers could be the superconducting ones by means of the Cooper pairs tunneling from the Cu(2)О2 planes, forming the induced superconductivity there.

About the Author

N. A. Kalanda
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072
Belarus

Nikolay A. Kalanda: Cand. Sci. (Phys.-Math.), Leading Researcher



References

1. High-temperature superconductivity: fundamental and applied research: collection of scientific articles. Ed. by A. A. Kiselev. Leningrad: Mashinostroenie, 1990, 684 p. (In Russ.)

2. Crabtree G. W., Nelson D. R. Vortex physics in high-temperature superconductors. Physics Today, 1997, vol. 50, no. 4, pp. 38—45. DOI: 10.1063/1.881715

3. Sreedhar K., Ganguly P. Evolution and the concomitant disappearance of high-Tc superconductivity with carrier concentration in the YBa2Cu3O7-d system (0.0 <d < 0.9): Crossover from a Mott insulator to a band metal. Phys. Rev. B, 1990, vol. 41, no. 1, pp. 371—382. DOI: 10.1103/PhysRevB.41.371

4. Krasin'kova M. V., Moizhes B. Ya. Influence of the ordering of oxygen atoms on the electrical transport properties of YBa2Cu3O7-х. Phys. Solid State, 1990, vol. 32, no. 1, pp. 318—321. (In Russ.)

5. Maeda H., Tanaka Y., Fukutomi M., Asano T. A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys., 1988, vol. 27, pt 2, no. 2, pp. L209—L210. DOI: 10.1143/JJAP.27.L209

6. Cava R. J., Batlogg B., Krajewski J. J., Rupp L. W., Schneemeyer L. F., Siegrist T., van Dover R. B., Marsh P.,

7. Peck (Jr) W. F., Gallagher P. K., Glarum S. H., Marshall J. H., Farrow R. C., Waszczak J. V., Hull R., Trevor P. Superconductivity near 70 К in a new family of layered copper oxides. Nature, 1988, vol. 336, no. 6196, pp. 211—214. DOI: 10.1038/336211a0

8. Silver T., Pan A. V., Ionescu M., Qin M. J., Dou S. X. Developments in high temperature superconductivity. Ann. Rep. Prog. Chem. Cect. C, 2002, vol. 98, pp. 323—373.

9. Fetisov V. B., Fetisov A. V., Fotiev A. A. Study of the oxidation process of YBa2Cu3O6+х-ceramics. Sverkhprovodimost’; fizika, khimiya, tekhnika, 1990, vol. 11, pp. 2627—2633. (In Russ.)

10. Adelman D., Durmester C. P., Wille L. T., Sterne P. A., Gronsky R. Long-range interactions, long-range order and a devil’s staircase in YBa2Cu3Oz. J. Phys.: Condens. Matter., 1992, vol. 4, no. 43,

11. pp. 585—592. DOI: 10.1088/0953-8984/4/43/003

12. Gibson G., Cohen L. F., Humphreys R.G., MacManus-Driscoll J. L. A Raman measurement of cation disorder in YBa2Cu3O7-x thin films. Physica C: Supercond., 2000, vol. 333, no. 3–4, pp. 139—145. DOI: 10.1016/S0921-4534(00)00093-9

13. Rocha J. A. M. R., Pavão A. C. Molecular orbital analysis of oxygen vacancy in YBa2Cu3O7-d. Physica C: Supercond., 2004,

14. vol. 411, no. 3–4, pp. 148—151. DOI: 10.1016/j.physc.2004.07.007

15. Sudareva S. V., Kuznetsova E. I., Krinitsina T. P., Bobylev I. B., Romanov E. P. Modulated structures in non-stoichiometric YBa2Cu3O7-d compounds. Physica C: Supercond., 2000, vol. 331, no. 3–4, pp. 263—273. DOI: 10.1016/S0921-4534(00)00007-1

16. Klinkova L. A., Nikolaichik V. I. Nanostructural inhomogeneity of YBa2Cu3O7-d. Physica C: Supercond., 2014, vol. 506,

17. pp. 33—39. DOI: 10.1016/j.physc.2014.08.007

18. Gufan A. Yu., Prus Yu. V. On the origin of orthorhombic deformations in YBa2Cu3O7-у. Phys. Solid State, 2000, vol. 42, no. 7, pp. 1211—1214. DOI: 10.1134/1.1131364

19. Aiigia A. A, Garces J., Bonadeo H. Influence of oxygen stoichiometry on the structure YBa2Cu3O7-d. Physica C, 1992,

20. vol. 190, pp. 234—241. DOI: 10.1016/0921-4534(92)90601-8

21. Vovk R. V., Khadzhai G. Ya., Goulatis I. L., Chroneos A. Fluctuation conductivity of oxygen underdoped YBa2Cu3O7-d single crystals. Physica B: Condens. Matter., 2014, vol. 436, no. 1, pp. 88—90. DOI: 10.1016/j.physb.2013.11.056

22. Vovk R. V., Obolenskii M. A., Zavgorodniy A. A., Bondarenko A. V., Goulatis I. L., Samoilov A. V., Chroneos A. Effect of high pressure on the fluctuation conductivity and the charge transfer of YBa2Cu3O7-d single crystals. East European J. Phys., 2014, vol. 1,

23. no. 4. pp. 42—48. DOI: 10.26565/2312-4334-2014-4-04

24. Marushkin K. N., Nipan G. D., Gus’kov V. N., Gavrichev K. S. The polymorphism of YBa2Cu3O7-d (123): a new approach. Solid State Ionics, 1997, vol. 101–103, pp. 605—609. DOI: 10.1016/S0167-2738(97)84090-8

25. Hilgenkamp H., Mannhart J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys., 2002, vol. 74, pp. 485—549. DOI: 10.1103/RevModPhys.74.485

26. Nariki S., Sakai N., Murakami M., Hirabayashi I. High critical current density in Y-Ba-Cu-O bulk superconductors with very fine Y211 particles. Supercond. Sci. Technol., 2004, vol. 17,

27. pp. S30—S35. DOI: 10.1088/0953-2048/17/2/057

28. Maki M., Nishizaki T., Shibata K., Kobayashi N. Layered charge-density waves with nanoscale coherence in YBa2Cu3O7-d.

29. Phys. Rev. B, 2005, vol. 72, p. 024536. DOI: 10.1103/PhysRevB.72.024536

30. Kobayashi H., Imaizumi T., Iguchia I., Tanakab Y., Kashiway S. Angle-dependent Josephson current in high-Tc YBa2Cu3O7-d ramp-edge junctions. Physica C: Supercond, 2001, vol. 357–360,

31. no. 2, pp. 1567—1571. DOI: 10.1016/S0921-4534(01)00550-0

32. Kalanda N. A., Trukhan V. M., Marenkin S. F. Manufacture of textured YBa2Cu3O7-Δ ceramics from Y2BaCuO5-“xBa3Cu5O8” and Y2Cu2O5-BaCuO2 systems. J. Inorg. Chem., 2002, vol. 47, no. 8, pp. 1114—1120.

33. Gurskii L. I., Kalanda N. A., Saad A. M., Truhan V. M., Haliakevich T. V. Crystallization features of YBa2Cu3O7-d in the Y2BaCuO5-BaCuO2-CuO and Y2Cu2O5-BaCuO2 systems. Cryst. Res. Technol., 2008, vol. 43, pp. 599—605. DOI: 10.1002/crat.200711127

34. Riess I., Porat O., Tuller H. L. Investigation of the dominant point defects in tetragonal YBa2Cu3Ox at elevated temperatures. J. Supercond., 1993, vol. 6, no. 5, pp. 313—316. DOI: 10.1007/BF00617477

35. Kalanda N. A., Trukhan V. M., Ketsko V. A. Oxygen exchange in YBa2Cu3O7-d. Inorg. Mater., 2002, vol. 38, no. 2, pp. 159—162. DOI: 10.1023/A:1014069228288

36. Gusakov V., Jezowski A., Barilo S. N., Kalanda N. A., Saiko A. Anisotropy of thermal conductivity in single crystals

37. YBa2Cu3O7. Physica B, 2000, vol. 284–288, pp. 989—990. DOI: 10.1016/S0921-4526(99)02324-8

38. Gololobov E. M. The order parameter of oxygen atoms and the superconductivity of the YBa2Cu3O7-d compound. Pis’ma v zhurnal tekhnicheskoi fiziki = Technical Physics Letters, 2000, vol. 26, no. 12, pp. 28—30. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/37809


Review

For citations:


Kalanda N.A. Electrical conductivity of YBa2Cu3O7-δ single crystals under conditions of anionic ordering in Cu(1)O1-δ layers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(1):71-77. (In Russ.) https://doi.org/10.17073/1609-3577-2020-1-71-77

Views: 717


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)