IR luminescence of CaGa2O4 : Yb3+ when excited by radiation with a wavelength of 940 and 980 nm
https://doi.org/10.17073/1609-3577-2020-1-78-85
Abstract
About the Authors
U. A. Mar’inaRussian Federation
1 Pushkin Str., Stavropol 355017
Ul’ana A. Mar’ina: Cand. Sci. (Eng.), Associate Professor, Department of Electronics and Nanotechnology, Institute of Engineering
V. A. Vorob’ev
Russian Federation
1 Pushkin Str., Stavropol 355017
Viktor A. Vorob’ev: Dr. Sci (Eng.), Professor, Senior Researcher, Department of Electronics and Nanotechnology, Institute of Engineering
A. P. Mar’in
Russian Federation
1 Pushkin Str., Stavropol 355017
Alexandr P. Mar’in: Postgraduate Student, Department of Electronics and Nanotechnology, Institute of Engineering
References
1. Bletskan D. I., Kabatsii V. M., Kranichets M., Frolova V. V., Gule E. G. Photoconductivity and photoluminescence of PbGa2Se4 crystals. Chalcogenide Letters. 2006, vol. 3, no. 12, pp. 125—132. URL: http://www.chalcogen.ro/Bletskan-articol.pdf
2. Bordun O. M., Bihday V. G., Kukharskyy I. Yo. Influence of annealing conditions on the luminescence and photoelectric properties of pure and Mn2+-activated ZnGa2O4 thin films. J. Appl. Spectrosc. 2013, vol. 80, no. 5, pp. 721—725. DOI: 10.1007/s10812-013-9832-2
3. Rai M., Singh S. K., Mishra K., Shankar R., Srivastava R. K., Rai S. B. Eu3+-activated CaGa2O4 wide band gap (WBG) material for solar blind UV conversion: fluorescence and photo-conductivity performance. J. Mater. Chem. C. 2014, vol. 2, no. 37, pp. 7918—7926. DOI: 10.1039/C4TC00965G
4. Glasser F. P., Glasser L. S. D. Crystal chemistry of some AB2O4 compounds. J. American Ceramic Society. 1963, vol. 46, no. 8, pp. 377—380. DOI: 10.1111/j.1151-2916.1963.tb11755.x
5. Mar´ina U.A., Vorob´ev V.A., Mar´in A.P., Pigulev R.V. Luminescent properties of strontium gallate activated by europium ions. In: Actual problems of engineering sciences: materials of the VIIth (64th) annual scientific-practical conference of teachers, students and young scientists of the North Caucasus Federal University «University Science — Region». Stavropol, 2019, pp. 470—472. (In Russ.)
6. Patent EP 0836791 B1H05B 33/14, C09K 11/80, C09K 11/66. International publication number: WO 97/02721. Doped amorphous and crystalline gallium oxides, alkaline earth gallates and doped zinc germanate phosphors as electroluminescent materials. T. Hamilton, A.H. Hamilton, G. Edmonton, 1998.
7. Jiang F., Jiang P., Yue M., Gao W., Cong R., Yang T. Temperature-induced phase transitions for stuffed tridymites SrGa2O4 and CaGa2O4. J. Solid State Chem. 2017, vol. 254, pp. 195—199. DOI: 10.1016/j.jssc.2017.07.024
8. Ye D., Hu Z., Zhang W., Cui Y., Luo L., Wang Y. Inner energy transfer and its influence on luminescence properties of CaGa2O4:Eu3+ reddish emission phosphors. Optical Materials. 2014, vol. 39, no. 11, pp. 1879—1882. DOI: 10.1016/j.optmat.2014.04.028
9. Wang S., Chen W., Zhou D., Qiu J., Xu X., Yu X. Long persistent properties of CaGa2O4:Bi3+ at different ambient temperature. The American Ceramic Society. 2017, vol. 100, no. 8, pp. 3514—3521. DOI: 10.1111/jace.14875
10. Keir P. D. Fabrication and characterization of ACTFEL devices: Diss. of PhD. Oregon State University, 2000, 280 p.
11. Minami T. Thin-film oxide phosphors as electroluminescent materials. Materials Research Society. 1999, vol. 560, pp. 47—58. DOI: 10.1557/PROC-560-47
12. Jeevaratnam J., Glasser F. P. The System CaO-Ga2O3. J. American Ceramic Society. 1961, vol. 44, no. 11, pp. 563—566. DOI: 10.1111/j.1151-2916.1961.tb11658.x
13. Rai M., S. K. Singh, P. Morthekai laser-induced excited-state crossover and spectral variation of Cr3+ in the high-crystal-field environment of CaGa2O4. Opt. Lett. 2016, vol. 41, no. 15, pp. 3635—3638. DOI: 10.1364/OL.41.003635
14. Qin X., Li Y., Zhang R., Ren J., Gecevicius M., Wu Y., Sharafudeen K., Dong G., Zhou S., Ma Z., Qiu J. Hybrid coordination-network-engineering for bridging cascaded channels to activate long persistent phosphorescence in the second biological window. Sci. Rep. 2016, vol. 6, pp. 20275(1-9). DOI: 10.1038/srep20275
15. Mar´ina U.A., Vorob´ev V.A., Mar´in A.P., Pigulev R.V. Study of the luminescent properties of SrGa2S4 activated by rare-earth ions Nd3+ In: Physics. Technology. Innovation FTI-2019: a collection of abstracts of the VI International Youth Scientific Conference dedicated to the 70th anniversary of the founding of the Physicotechnological Institute. Yekaterinburg, 2019, pp. 737—738. (In Russ.)
16. Rai M., Mishra K., Rai S. B., Paulramasamy M. Tailoring UV-blue sensitization effect in enhancing near infrared emission in X,Yb3+: CaGa2O4 (X = 0, Eu3+, Bi3+, Cr3+) phosphor for solar energy conversion. Materials Research Bulletin. 2018, vol. 105, pp. 192—201. DOI: 10.1016/j.materresbull.2018.04.051
17. Mar´ina U.A. Development of synthesis technology and study of phosphors based on CaSnO3, BaSnO3, SrSnO3, activated by rare-earth ions: PhD thesis. Novocherkassk, 2018, pp. 52—58. (In Russ.)
18. Ropp R. C. Encyclopedia of the Alkaline Earth Compounds. Ch. 6: Group 13 (B, Al, Ga, In and Tl) Alkaline Earth Compounds. Elsevier, 2013, pp. 586—587. DOI: 10.1016/C2012-0-00777-6
19. Akimova M.S. Phase formation and crystalline structure formation upon receipt of calcium monoaluminate and luminescent materials based on it using the sol-gel method: master’s thesis. Tomsk, 2019, 35 p. (In Russ.)
20. Weber M. J. Handbook of optical materials. CRC Press, 2003, 536 p.
21. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B. 1969, vol. 25, no. 5, pp. 925—946. DOI: 10.1107/S0567740869003220
22. Ahrens L. H. The use of ionization potentials. Pt. 1. Ionic radii of the elements. Geochimica et Cosmochimica Acta. 1952, vol. 2, no. 3, pp. 155—169. DOI: 10.1016/0016-7037(52)90004-5
23. Guzik M., Tomaszewicz E., Guyot Y., Legendziewicz J., Boulon G. Spectroscopic properties, concentration quenching and Yb3+ site occupations in vacancied scheelite-type molybdates. J. Luminescence. 2016, vol. 169, no. 2, pp. 755—764. DOI: 10.1016/j.jlumin.2015.02.043
24. Guzik M., Bieza M., Tomaszewicz E., Guyot Y., Boulon G. Research on the Yb3+ ion activated cubic molybdates and molybdato-tungstates for optical transparent ceramics. In: Quantum Nano-Photonics. NATO 2017. Dordrecht: Springer, 2018, ch. 17, pp. 315—354. DOI: 10.1007/978-94-024-1544-5_17
25. Klimin S. A., Popova M. N., Chukalina E. P., Malkin B. Z., Zakirov A. R., Antic-Fidancev E., Goldner Ph., Aschehoug P., Dhalenne G. Stark structure of the Yb3+ ion levels in (YbxY1-x)2Ti2O7 and the crystal field in rare-earth titanates with a pyrochlore structure. Phys. Solid State. 2005, vol. 47, no 8, pp. 1425—1430. DOI: 10.1134/1.2014481
Review
For citations:
Mar’ina U.A., Vorob’ev V.A., Mar’in A.P. IR luminescence of CaGa2O4 : Yb3+ when excited by radiation with a wavelength of 940 and 980 nm. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(1):78-85. (In Russ.) https://doi.org/10.17073/1609-3577-2020-1-78-85