Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Study of colloidal dispersions of gold nanorods using light scattering methods

https://doi.org/10.17073/1609-3577-2020-2-116-126

Abstract

Five samples of colloidal dispersions of gold nanorods with various aspect ratio were studied using methods based on light scattering. Transmission electron microscopy was used as a reference method. The advantages and disadvantages of the dynamic light scattering and nanoparticle tracking analysis methods for determination of the geometric parameters of nanoparticles, their concentration, monodispersity, as well as for detection of large aggregates and quasispherical impurities were given. It was shown that the method of depolarized dynamic light scattering can be used for determination of the geometric parameters of liquid dispersions of colloidal gold nanorods. Moreover, it was found that the presence of large impurities or particle aggregates in the sample strongly affects the measurement results. The presence of large particles in the dispersion can be determined using dynamic light scattering or nanoparticle tracking analysis methods. The method of dynamic light scattering was also found to be more sensitive to the presence of even a small amount of large impurities or aggregates in the sample. The monodispersity of a liquid dispersion of nanorods can also be estimated by dynamic light scattering and nanoparticle tracking analysis methods, and, comparing to electron microscopy, the measurement results can be considered more statistically reliable due to the analysis of a larger number of particles. It was found that the increase of spherical particles concentration in the composite dispersion of nanospheres and nanorods leads to a decrease in the contribution of the rotational mode in the total scattering intensity. In addition, the concentration of quasispherical impurities in samples of liquid dispersions of colloidal gold nanorods was calculated based on measurements of the depolarization degree of scattered light.

About the Authors

P. V. Shalaev
National Research University of Electronic Technology
Russian Federation

1 Shokin Sq., Zelenograd, Moscow, 124498

Pavel V. Shalaev: PhD student



P. A. Monakhova
National Research University of Electronic Technology
Russian Federation

1 Shokin Sq., Zelenograd, Moscow, 124498

Polina A. Monakhova: Student



S. A. Tereshchenko
National Research University of Electronic Technology
Russian Federation

1 Shokin Sq., Zelenograd, Moscow, 124498

Sergey A. Tereshchenko: Dr. Sci. (Phys.-Math.), Professor 



References

1. Huang X., Neretina S., El-Sayed M. Gold nanorods: from synthesis and propertiesto biological and biomedical applications. Adv. Mater. 2009, vol. 21, no. 48, pp. 4880—4910. DOI: 10.1002/adma.200802789

2. Khlebtsov N. Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electronics. 2008, vol. 38, no. 6, pp. 504—529. (In Russ.). DOI: 10.1070/QE2008v038n06ABEH013829

3. Lee K. C. J., Chen Y.-H., Lin H.-Y., Cheng C.-C., Chen P.-Y., Wu T.-Y., Shih M.-H., Wei K.-H., Li L.-J., Chang C.-W. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep. 2015, vol. 5, p. 16374. DOI: 10.1038/srep16374

4. Liang Z., Sun J., Jiang Y., Jiang L., Chen X. Plasmonic enhanced optoelectronic devices. Plasmonics. 2014, vol. 9, pp. 859—866. DOI: 10.1007/s11468-014-9682-7

5. Reiser B., González-García L., Kanelidis I., Maurera J. H. M., Kraus T. Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 2016, no. 7, pp. 4190—4196. DOI: 10.1039/c6sc00142d

6. Wu B., Liu D., Mubeen S., Chuong T. T., Moskovits M., Stucky G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, vol. 138, no. 4, pp. 1114—1117. DOI: 10.1021/jacs.5b11341

7. Shen G., Chen D. One-dimensional nanostructures for electronic and optoelectronic devices. Front. Optoelectron. China. 2010, vol. 3, no. 2, pp. 125—138. DOI: 10.1007/s12200-010-0001-4

8. Mahmoud A. Y., Zhang J., Ma D., Izquierdo R., Truong V.-V. Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer. Organic Electron. 2012, vol. 13, no. 12, pp. 3102—3107. DOI: 10.1016/j.orgel.2012.09.015

9. Liu C., Zhao C., Zhang X., Guo W., Liu K., Ruan S. Unique gold nanorods embedded active layer enabling strong plasmonic effect to improve the performance of polymer photovoltaic devices. J. Phys. Chem. C. 2016, vol. 120, no. 11, pp. 6198—6205. DOI: 10.1021/acs.jpcc.6b00459

10. Chon J. W. M., Bullen C., Zijlstra P., Gu M. Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage. Adv. Funct. Mater. 2007, vol. 17, no. 6, pp. 875—880. DOI: 10.1002/adfm.200600565

11. Zijlstra P., Chon J., Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature. 2009, vol. 459, pp. 410—413. DOI: 10.1038/nature08053

12. Du Y., Jiang Q., Beziere N., Song L., Zhang Q., Peng D., Chi C., Yang X., Guo H., Diot G., Ntziachristos V., Ding B., Tian J. DNA-nanostructure—gold-nanorod hybridsfor enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater. 2016, vol. 28, no. 45, pp. 10000—10007. DOI: 10.1002/adma.201601710

13. Li Z., Huang H., Tang S., Li Y., Yu X.-F., Wang H., Li P., Sun Z., Zhang H., Liu C., Chu P. K. Small gold nanorods laden macrophagesfor enhanced tumor coverage in photothermal therapy. Biomaterials. 2016, vol. 74, pp. 144—154. DOI: 10.1016/j.biomaterials.2015.09.038

14. Jain P. K., Lee K. S., El-Sayed I. H., El-Sayed M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B. 2006, vol. 110, no. 14, pp. 7238—7248. DOI: 10.1021/jp057170o

15. Davis M., Chen Z., Shin D. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discovery. 2008, vol. 7, no. 9, pp. 771—782. DOI: 10.1038/nrd2614

16. Mackey M., Ali M., Austin L., Near R., El-Sayed M. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J. Phys. Chem. B. 2014, vol. 118, no. 5, pp. 1319—1326. DOI: 10.1021/jp409298f

17. Khanadeev V., Khlebtsov N., Burov A., Khlebtsov B. Tuning of plasmon resonance of gold nanorods by controlled etching. Colloid Journal. 2015, vol. 77, no. 5, pp. 652—660. DOI: 10.1134/S1061933X15050117

18. Xu R. Light scattering: A review of particle characterization applications. Particuology. 2014, vol. 18, pp. 11—21. DOI: 10.1016/j.partic.2014.05.002

19. Lehner D., Lindner H., Glatter O. Determination of the translational and rotational diffusion coefficients of rod-like particles using depolarized dynamic light scattering. Langmuir. 2000, vol. 16, no. 4, pp. 1689—1695. DOI: 10.1021/la9910273

20. Tirado M., Martínez C., de la Torre J. G. Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J. Chem. Phys. 1984, vol. 81, no. 4, pp. 2047—2052. DOI:10.1063/1.447827

21. Tereshchenko S., Burnaevsky I., Dolgushin S., Shalaev P. Determination of the composition of liquid polydispersions of cylinder-like microorganisms from the laser depolarization degree. Biomedical Engineering. 2017, vol. 50, no. 6, pp. 385—389. DOI: 10.1007/s10527-017-9661-3


Review

For citations:


Shalaev P.V., Monakhova P.A., Tereshchenko S.A. Study of colloidal dispersions of gold nanorods using light scattering methods. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(2):116-126. (In Russ.) https://doi.org/10.17073/1609-3577-2020-2-116-126

Views: 840


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)