Бидоменные сегнетоэлектрические кристаллы: свойства и перспективы применения
https://doi.org/10.17073/1609-3577-2020-1-5-56
Аннотация
Ниобат лития (LiNbO3) и танталат лития (LiTaO3) относятся к важнейшим и наиболее широко применяемым материалам когерентной и нелинейной оптики, а также акустики. Высокие требования, предъявляемые к однородности и воспроизводимости характеристик, стали основой для создания промышленной технологии выпуска высококачественных кристаллов, освоенной многими предприятиями мира. Однако использование LiNbO3 и LiTaO3 не ограничивается перечисленными выше областями техники благодаря выраженным пьезо- и сегнетоэлектрическим свойствам. Одним из перспективных направлений использования кристаллов является создание на их основе электромеханических преобразователей для прецизионных сенсоров и актюаторов. При этом высокая термическая стабильность пьезоэлектрических и механических свойств, отсутствие гистерезиса и крипа позволяют создавать электромеханические преобразователи, способные работать в широком диапазоне температур, недостижимом для обычно используемых для этих целей сегнетокерамических материалов. Главным преимуществом LiNbO3 и LiTaO3 перед другими монокристаллическими пьезоэлектриками является возможность направленного воздействия на характеристики устройств путем управления сегнетоэлектрической доменной структурой кристаллов. Одним из наиболее ярких примеров использования доменной инженерии для создания электромеханических преобразователей на основе кристаллов является формирование в них так называемой бидоменной структуры — двух доменов макроскопического размера, расположенных в одной кристаллической пластине, имеющих встречно направленные векторы спонтанной поляризации и разделенных заряженной доменной стенкой. Высокие коэрцитивные поля переключения делают инверсные домены стабильными вплоть до температуры Кюри (порядка 1140 °C у LiNbO3 и 600 °C у LiTaO3). В обзоре рассмотрены основные достижения в области формирования бидоменной структуры и приповерхностных инверсных доменов в кристаллах LiNbO3 и LiTaO3. Представлены методы визуализации доменной структуры в кристаллах и неразрушающие методы контроля положения междоменной границы. Проведен сравнительный анализ методов формирования инверсных доменов в кристаллах, обсуждены закономерности и технологические приемы управления доменной структурой. Приведены основные физические модели, предложенные в литературе для объяснения эффекта образования инверсных доменов, рассмотрены их сильные и слабые стороны. Кратко перечислены способы выбора кристаллографического среза для создания устройств, в которых используются бидоменные кристаллы. Приведены примеры реализации устройств на основе бидоменных кристаллов: актюаторов, сенсоров, акустических преобразователей, систем сбора бросовой энергии.
Об авторах
И. В. КубасовРоссия
Ленинский просп., д. 4, Москва, 119049
Кубасов Илья Викторович — ассистент, кафедра Материаловедения полупроводников и диэлектриков
А. М. Кислюк
Россия
Ленинский просп., д. 4, Москва, 119049
Кислюк Александр Михайлович — инженер 1-й категории, кафедра Материаловедения полупроводников и диэлектриков
А. В. Турутин
Россия
Ленинский просп., д. 4, Москва, 119049
Турутин Андрей Владимирович — инженер 1-й категории, кафедра Материаловедения полупроводников и диэлектриков
М. Д. Малинкович
Россия
Ленинский просп., д. 4, Москва, 119049
Малинкович Михаил Давыдович — канд. физ.-мат. наук, доцент, кафедра Материаловедения полупроводников и диэлектриков
Ю. Н. Пархоменко
Россия
Ленинский просп., д. 4, Москва, 119049;
ул. Электродная, д. 2, Москва, 111524
Пархоменко Юрий Николаевич — доктор физ.-мат. наук, профессор, заведующий кафедрой Материаловедения полупроводников и диэлектриков
Список литературы
1. Wong K. K. (Ed.) Properties of Lithium Niobate. London: The Institution of Electrical Engineers, 2002. 429 p.
2. Volk T., Wöhlecke M. Lithium Niobate. V. 115. Berlin; Heidelberg: Springer, 2008. DOI: 10.1007/978-3-540-70766-0
3. Wooten E. L., Kissa K. M., Yi-Yan A., Murphy E. J., Lafaw D. A., Hallemeier P. F., Maack D., Attanasio D. V., Fritz D. J., McBrien G. J., Bossi D. E. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Top. Quantum Electron. 2000. V. 6, N 1. P. 69—82. DOI: 10.1109/2944.826874
4. Turner R. C., Fuierer P. A., Newnham R. E., Shrout T. R. Materials for high temperature acoustic and vibration sensors: A review // Appl. Acoust. 1994. V. 41, N 4. P. 299—324. DOI: 10.1016/0003-682X(94)90091-4
5. Ruppel C. C. W. Acoustic Wave Filter Technology. A Review // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 9. P. 1390—1400. DOI: 10.1109/TUFFC.2017.2690905
6. Passaro V. M. N., Magno F. Holographic gratings in photorefractive materials: A review // Laser Phys. 2007. V. 17, N 3. P. 231—243. DOI: 10.1134/S1054660X07030012
7. Kwak C. H., Kim G. Y., Javidi B. Volume holographic optical encryption and decryption in photorefractive LiNbO3: Fe crystal // Opt. Commun. 2019. V. 437. P. 95—103. DOI: 10.1016/j.optcom.2018.12.049
8. Chauvet M., Henrot F., Bassignot F., Devaux F., Gauthier-Manuel L., Pêcheur V., Maillotte H., Dahmani B. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon // J. Opt. 2016. V. 18, N 8. P. 085503. DOI: 10.1088/2040-8978/18/8/085503
9. Tomita I. Highly efficient cascaded difference-frequency generation in periodically poled LiNbO3 devices with resonators // IEEJ Trans. Electr. Electron. Eng. 2018. V. 13, N 8. P. 1214—1215. DOI: 10.1002/tee.22687
10. Sharapova P. R., Luo K. H., Herrmann H., Reichelt M., Meier T., Silberhorn C. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits // New J. Phys. 2017. V. 19, N 12. P. 123009. DOI: 10.1088/1367-2630/aa9033
11. Zaltron A., Bettella G., Pozza G., Zamboni R., Ciampolillo M., Argiolas N., Sada C., Kroesen S., Esseling M., Denz C. Integrated optics on Lithium Niobate for sensing applications // Proc. SPIE. Optical Sensors. 2015. V. 9506. P. 950608. DOI: 10.1117/12.2178457
12. Janaideh M. Al, Rakheja S., Su C.-Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator // Mechatronics. 2009. V. 19, N 5. P. 656—670. DOI: 10.1016/j.mechatronics.2009.02.008
13. Devasia S., Eleftheriou E., Moheimani S. O. R. A Survey of control issues in nanopositioning // IEEE Trans. Control Syst. Technol. 2007. V. 15, N 5. P. 802—823. DOI: 10.1109/TCST.2007.903345
14. Hall D. A. Nonlinearity in piezoelectric ceramics // J. Mater. Sci. 2001. V. 36, N 19. P. 4575—4601. DOI: 10.1023/A:1017959111402
15. Zhou D., Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading // Acta Mater. 2006. V. 54, N 5. P. 1389—1396. DOI: 10.1016/j.actamat.2005.11.010
16. Zhao X., Zhang C., Liu H., Zhang G., Li K. Analysis of Hysteresis-Free Creep of the Stack Piezoelectric Actuator // Math. Probl. Eng. 2013. V. 2013. P. 1—10. DOI: 10.1155/2013/187262
17. Croft D., Shed G., Devasia S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application // J. Dynamic Systems, Measurement and Control. 2001. V. 123, N 1. P. 35—43. DOI: 10.1115/1.1341197
18. Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. 1995. V. 172, N 1. P. 7—18. DOI: 10.1080/00150199508018452
19. Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Malinkovich M. D., Parkhomenko Y. N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal // Sensors. 2019. V. 19, N 3. P. 614. DOI: 10.3390/s19030614
20. Palatnikov M. N., Sandler V. A., Sidorov N. V., Makarova O. V., Manukovskaya D. V. Conditions of application of LiNbO3 based piezoelectric resonators at high temperatures // Phys. Lett. A. 2020. V. 384, N 14. P. 126289. DOI: 10.1016/j.physleta.2020.126289
21. Islam M. S., Beamish J. Piezoelectric creep in LiNbO3, PMN-PT and PZT-5A at low temperatures // J. Appl. Phys. 2019. V. 126, N 20. P. 204101. DOI: 10.1063/1.5119351
22. Nakamura K., Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices // Proc. IEEE Ultrasonics Symposium. P. 309—318. DOI: 10.1109/ULTSYM.1989.67000
23. Nakamura K. antipolarity domains formed by heat treatment of ferroelectric crystals and their applications // Jpn. J. Appl. Phys. 1992. V. 31, N S1. P. 9. DOI: 10.7567/JJAPS.31S1.9
24. Zhang Z.-Y., Zhu Y., Wang H., Wang L., Zhu S., Ming N. Domain inversion in LiNbO3 and LiTaO3 induced by proton exchange // Phys. B: Condensed Matter. 2007. V. 398, N 1. P. 151—158. DOI: 10.1016/j.physb.2007.05.011
25. Кузьминов Ю. С. Ниобат и танталат лития: материалы для нелинейной оптики. М.: Наука, 1975. 224 c.
26. Weis R. S., Gaylord T. K. Lithium niobate: Summary of physical properties and crystal structure // Appl. Phys. A.: Solids and Surfaces. 1985. V. 37, N 4. P. 191—203. DOI: 10.1007/BF00614817
27. Toyoura K., Ohta M., Nakamura A., Matsunaga K. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate // J. Appl. Phys. 2015. V. 118, N 6. P. 064103. DOI: 10.1063/1.4928461
28. Zhang Z.-G., Abe T., Moriyoshi C., Tanaka H., Kuroiwa Y. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction // Appl. Phys. Express. 2018. V. 11, N 7. P. 071501. DOI: 10.7567/APEX.11.071501
29. Sanna S., Schmidt W. G. Lithium niobate X -cut, Y-cut, and Z-cut surfaces from ab initio theory // Phys. Rev. B. 2010. V. 81, N 21. P. 214116. DOI: 10.1103/PhysRevB.81.214116
30. IEEE 176-1987 Standard on Piezoelectricity. New York: IEEE, 1988. DOI: 10.1109/IEEESTD.1988.79638
31. Abrahams S. C., Buehler E., Hamilton W. C., Laplaca S. J. Ferroelectric lithium tantalate - 3. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K // J. Phys. Chem. Solids. 1973. V. 34, N 3. P. 521—532. DOI: 10.1016/0022-3697(73)90047-4
32. Nakamura K., Hosoya M., Shimizu H. estimation of thickness of ferroelectric inversion layers in LiTaO3 plates by measuring piezoelectric responses // Jpn. J. Appl. Phys. 1990. V. 29, N S1. P. 95. DOI: 10.7567/JJAPS.29S1.95
33. Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices // IEEE Ultrasonics Symposium, 1986. P. 719—722 DOI: 10.1109/ULTSYM.1986.198828
34. Boyd G. D., Miller R. C., Nassau K., Bond W. L., Savage A. LiNbO3: an efficient phase matchable nonlinear optical material // Appl. Phys. Lett. 1964. V. 5, N 11. P. 234—236. DOI: 10.1063/1.1723604
35. Kugel V. D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals // Ferroelectr. Lett. Section. 1993. V. 15, N 3–4. P. 55—60. DOI: 10.1080/07315179308204239
36. Малинкович М. Д., Кубасов И. В., Темиров А. А., Кислюк А. М., Игнатьева Я. В., Гончарова Ю. В., Jachalke S., Stöcker H., Пархоменко Ю. Н. Пироэлектрические свойства бидоменных кристаллов ниобата лития // Фундаментальные проблемы радиоэлектронного приборостроения. 2018. Т. 18, № 2. С. 426–429.
37. Nassau K., Levinstein H. J., Loiacono G. M. The domain structure and etching of ferroelectric lithium niobate // Appl. Phys. Lett. 1965. V. 6, N 11. P. 228—229. DOI: 10.1063/1.1754147
38. Yamada T., Niizeki N., Toyoda H. Piezoelectric and elastic properties of lithium niobate single crystals // Jpn. J. Appl. Phys. 1967. V. 6, N 2. P. 151—155. DOI: 10.1143/JJAP.6.151
39. Sones C. L., Mailis S., Brocklesby W. S., Eason R. W., Owen J. R. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations // J. Mater. Chem. 2002. V. 12, N 2. P. 295—298. DOI: 10.1039/b106279b
40. Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation // J. Lightwave Technology. 1989. V. 7, N 10. P. 1597—1600. DOI: 10.1109/50.39103
41. Niizeki N., Yamada T., Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate // Jpn. J. Appl. Phys. 1967. V. 6, N 3. P. 318—327. DOI: 10.1143/JJAP.6.318
42. Sones C. L. Domain engineering techniques and devices in lithium niobate. Doctoral Thesis. University of Southampton, 2003, 167 p. URL: https://eprints.soton.ac.uk/15474/1/Sones_2003_thesis_2744.pdf
43. Güthner P., Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy // Appl. Phys. Lett. 1992. V. 61, N 9. P. 1137—1139. DOI: 10.1063/1.107693
44. Soergel E. Piezoresponse force microscopy (PFM) // J. Phys. D: Appl. Phys. 2011. V. 44, N 46. P. 464003. DOI: 10.1088/0022-3727/44/46/464003
45. Kalinin S. V., Bonnell D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces // Phys. Rev. B. 2002. V. 65, N 12. P. 125408. DOI: 10.1103/PhysRevB.65.125408
46. Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallogr. Rep. 2015. V. 60, N 5. P. 700—705. DOI: 10.1134/S1063774515040136
47. Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallogr. Rep. 2016. V. 61, N 2. P. 258—262. DOI: 10.1134/S1063774516020115
48. Kislyuk A. M., Ilina T. S., Kubasov I. V., Kiselev D. A., Temirov A. A., Turutin A. V., Malinkovich M. D., Polisan A. A., Parkhomenko Y. N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy // Mod. Electron. Mater. 2019. V. 5, N 2. P. 51—60. DOI: 10.3897/j.moem.5.2.51314
49. Кислюк А. М., Ильина Т. С., Кубасов И. В., Киселев Д. А., Темиров А. А., Турутин А. В., Малинкович М. Д., Полисан А. А., Пархоменко Ю. Н. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии // Известия вузов. Материалы электронной техники. 2019. Т. 22, № 1. С. 5—17. DOI: 10.17073/1609-3577-2019-1-5-17
50. Yin Q. R., Zeng H. R., Li G. R., Xu Z. K. Near-field acoustic microscopy of ferroelectrics and related materials // Mater. Sci. Eng. B. 2003. V. 99, N 1–3. P. 2—5. DOI: 10.1016/S0921-5107(02)00438-5
51. Yin Q. R., Zeng H. R., Yu H. F., Li G. R. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material // J. Mater. Sci. 2006. V. 41, N 1. P. 259—270. DOI: 10.1007/s10853-005-7244-2
52. Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W. G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy // Ferroelectrics. 2011. V. 420, N 1. P. 44—48. DOI: 10.1080/00150193.2011.594774
53. Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W. G., Berth G., Zrenner A., Sanna S. Imaging of 180° ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism // Phys. Rev. Mater. 2018. V. 2, N 10. P. 103801. DOI: 10.1103/PhysRevMaterials.2.103801
54. Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy // J. Appl. Phys. 2003. V. 93, N 4. P. 2295—2297. DOI: 10.1063/1.1538333
55. Otto T., Grafström S., Chaib H., Eng L. M. Probing the nanoscale electro-optical properties in ferroelectrics // Appl. Phys. Lett. 2004. V. 84, N 7. P. 1168—1170. DOI: 10.1063/1.1647705
56. Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics // Opt. Express. 2011. V. 19, N 8. P. 7153. DOI: 10.1364/OE.19.007153
57. Bozhevolnyi S. I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls // Opt. Commun. 1998. V. 152, N 4–6. P. 221—224. DOI: 10.1016/S0030-4018(98)00176-X
58. Neacsu C. C., van Aken B. B., Fiebig M., Raschke M. B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 // Phys. Rev. B. 2009. V. 79, N 10. P. 100107. DOI: 10.1103/PhysRevB.79.100107
59. Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation // Opt. Express. 2010. V. 18, N 16. P. 16539. DOI: 10.1364/OE.18.016539
60. Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation // Phys. Rev. B. 2014. V. 89, N 3. P. 035314. DOI: 10.1103/PhysRevB.89.035314
61. Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K. D., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy // Nature Commun. 2017. V. 8, N 1. P. 15768. DOI: 10.1038/ncomms15768
62. Irzhak D. V., Kokhanchik L. S., Punegov D. V., Roshchupkin D. V. Study of the specific features of lithium niobate crystals near the domain walls // Phys. Solid State. 2009. V. 51, N 7. P. 1500—1502. DOI: 10.1134/S1063783409070452
63. Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi (a). 1975. V. 31, N 2. P. 729—737. DOI: 10.1002/pssa.2210310246
64. Ballman A. A., Brown H. Ferroelectric domain reversal in lithium metatantalate // Ferroelectrics. 1972. V. 4, N 1. P. 189—194. DOI: 10.1080/00150197208235761
65. Shur V. Y. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 // J. Mater. Sci. 2006. V. 41, N 1. P. 199—210. DOI: 10.1007/s10853-005-6065-7
66. Rosenman G., Urenski P., Agronin A., Rosenwaks Y., Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy // Appl. Phys. Lett. 2003. V. 82, N 1. P. 103—105. DOI: 10.1063/1.1534410
67. Shur V. Y., Chezganov D. S., Smirnov M. M., Alikin D. O., Neradovskiy M. M., Kuznetsov D. K. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate // Appl. Phys. Lett. 2014. V. 105, N 5. P. 052908. DOI: 10.1063/1.4891842
68. Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO : LiNbO3 by applying electric fields // Appl. Phys. Lett. 1996. V. 69, N 11. P. 1565—1567. DOI: 10.1063/1.117031
69. Volk T. R., Kokhanchik L. S., Gainutdinov R. V., Bodnarchuk Y. V., Lavrov S. D. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: A review // J. Advanced Dielectrics. 2018. V. 08, N 02. P. 1830001. DOI: 10.1142/S2010135X18300013
70. Makio S., Nitanda F., Ito K., Sato M. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange // Appl. Phys. Lett. 1992. V. 61, N 26. P. 3077—3079. DOI: 10.1063/1.107990
71. Pendergrass L. L. Ferroelectric microdomain reversal at room temperature in lithium niobate // J. Appl. Phys. 1987. V. 62, N 1. P. 231—236. DOI: 10.1063/1.339186
72. Bermúdez V., Dutta P. S., Serrano M. D., Diéguez E. In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth // J. Crystal Growth. 1996. V. 169, N 2. P. 409—412. DOI: 10.1016/S0022-0248(96)00742-7
73. Malinkovich M. D., Bykov A. S., Kubasov I. V., Kiselev D. A., Ksenich S. V., Zhukov R. N., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators // Russ. Microelectron. 2016. V. 45, N 8–9. P. 582—586. DOI: 10.1134/S1063739716080096
74. Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. 1976. V. 13, N 1. P. 479—481. DOI: 10.1080/00150197608236646
75. Luh Y. S., Feigelson R. S., Fejer M. M., Byer R. L. Ferroelectric domain structures in LiNbO3 single-crystal fibers // J. Crystal Growth. 1986. V. 78, N 1. P. 135—143. DOI: 10.1016/0022-0248(86)90510-5
76. Luh Y. S., Fejer M. M., Byer R. L., Feigelson R. S. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications // J. Crystal Growth. 1987. V. 85, N 1–2. P. 264—269. DOI: 10.1016/0022-0248(87)90233-8
77. Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russ. Microelectron. 2014. V. 43, N 8. P. 536—542. DOI: 10.1134/S1063739714080034
78. Быков А. С., Григорян С. Г., Жуков Р. Н., Киселев Д. А., Кубасов И. В., Малинкович М. Д., Пархоменко Ю. Н. Формирование бидоменной структуры в пластинах монокристаллических сегнетоэлектриков стационарным распределением температурных полей // Известия вузов. Материалы электронной техники. 2013. Т. 16, № 1. С. 11—17.
79. Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. 1987. V. 50, N 20. P. 1413—1414. DOI: 10.1063/1.97838
80. Barns R. L., Carruthers J. R. Lithium tantalate single crystal stoichiometry // J. Appl. Crystallogr. 1970. V. 3, N 5. P. 395—399. DOI: 10.1107/s0021889870006490
81. Fukuma M., Noda J. Li in- and out-diffusion processes in LiNbO3 // Jpn. J. Appl. Phys. 1981. V. 20, N 10. P. 1861—1865. DOI: 10.1143/JJAP.20.1861
82. Carruthers J. R., Kaminow I. P., Stulz L. W. diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate // Appl. Opt. 1974. V. 13, N 10. P. 2333. DOI: 10.1364/AO.13.002333
83. Kaminow I. P., Carruthers J. R. Optical waveguiding layers in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1973. V. 22, N 7. P. 326—328. DOI: 10.1063/1.1654657
84. Svaasand L. O., Eriksrud M., Nakken G., Grande A. P. Solid-solution range of LiNbO3 // J. Crystal Growth. 1974. V. 22, N 3. P. 230—232. DOI: 10.1016/0022-0248(74)90099-2
85. Allemann J. A., Xia Y., Morriss R. E., Wilkinson A. P., Eckert H., Speck J. S., Levi C. G., Lange F. F., Anderson S. Crystallization behavior of Li1-5xTa1+xO3 glasses synthesized from liquid precursors // J. Mater. Res. 1996. V. 11, N 09. P. 2376—2387. DOI: 10.1557/JMR.1996.0301
86. Bordui P. F., Norwood R. G., Bird C. D., Carella J. T. Stoichiometry issues in single-crystal lithium tantalate // J. Appl. Phys. 1995. V. 78, N 7. P. 4647—4650. DOI: 10.1063/1.359811
87. Holman R. L. Novel uses of gravimetry in the processing of crystalline ceramics / In: Processing of Crystalline Ceramics (Materials Science Research, V. 11), H. (III) Palmour, R. F. Davis and T. M. Hare, Eds. New York: Plenum Press, 1978. P. 343—357.
88. Евланова Н. Ф., Рашкович Л. Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития // Физика твердого тела. 1974. Т. 16, № 2. С. 555—557.
89. Evlanova N. L., Rashkovich L. N. Annealing Effect on domain-structure of lithium meta-niobate single-crystals // Sov. Phys. Solid State. 1974. V. 16. P. 354
90. Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3 // Jpn. J. Appl. Phys. 1977. V. 16, N 6. P. 1069—1070. DOI: 10.1143/JJAP.16.1069
91. Hsu W.-Y., Gupta M. C. Domain inversion in MgO-diffused LiNbO3 // Appl. Opt. 1993. V. 32, N 12. P. 2049. DOI: 10.1364/AO.32.002049
92. Kugel V. D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals // Appl. Phys. Lett. 1993. V. 62, N 23. P. 2902—2904. DOI: 10.1063/1.109191
93. Kugel V. D., Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions // Appl. Phys. Lett. 1994. V. 65, N 19. P. 2398—2400. DOI: 10.1063/1.112687
94. Åhlfeldt H. Single-domain layers formed in heat-treated LiTaO3 // Appl. Phys. Lett. 1994. V. 64, N 24. P. 3213—3215. DOI: 10.1063/1.111340
95. Pryakhina V. I., Greshnyakov E. D., Lisjikh B. I., Akhmatkhanov A. R., Alikin D. O., Shur V. Y., Bartasyte A. As-grown domain structure in lithium tantalate with spatially nonuniform composition // Ferroelectrics. 2018. V. 525, N 1. P. 47—53. DOI: 10.1080/00150193.2018.1432926
96. Rosenman G., Kugel V. D., Angert N. Domain inversion in LiNbO3 optical waveguides // Ferroelectrics. 1994. V. 157, N 1. P. 111—116. DOI: 10.1080/00150199408229491
97. Kubasov I., Kislyuk A., Ilina T., Shportenko A. Kiselev D., Turutin A., Temirov A., Malinkovich M., Parhomenko Yu. Charged domain walls in reduced bidomain lithium niobate single crystals. 2020. DOI: 10.13140/RG.2.2.15387.00804
98. Yamamoto K., Mizuuchi K., Takeshige K., Sasai Y., Taniuchi T. Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation // J. Appl. Phys. 1991. V. 70, N 4. P. 1947—1951. DOI: 10.1063/1.349477
99. Fujimura M., Suhara T., Nishihara H. Ferroelectric-domain inversion induced by SiO2 cladding for LiNbO3 waveguide SHG // Electronics Lett. 1991. V. 27, N 13. P. 1207. DOI: 10.1049/el:19910752
100. Fujimura M., Suhara T., Nishihara H. LiNbO3 waveguide SHG devices based on a ferroelectric domain-inverted grating induced by SiO2 cladding // Electron. Commun. Jpn. (Pt II: Electronics). 1992. V. 75, N 12. P. 40—49. DOI: 10.1002/ecjb.4420751205
101. Webjorn J., Laurell F., Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide // IEEE Photonics Technol. Lett. 1989. V. 1, N 10. P. 316–318. DOI: 10.1109/68.43360
102. Jackel J. L. Suppression of outdiffusion in titanium diffused LiNbO3: A review // J. Opt. Commun. 1982. V. 3, N 3. P. 82—85. DOI: 10.1515/JOC.1982.3.3.82
103. Naumova I. I., Evlanova N. F., Gliko O. A., Lavrichev S. V. Czochralski-grown lithium niobate with regular domain structure // Ferroelectrics. 1997. V. 190, N 1. P. 107—112. DOI: 10.1080/00150199708014101
104. Kracek F. C. The binary system Li2O–SiO2 // J. Phys. Chem. 1930. V. 34, N 12. P. 2641—2650. DOI: 10.1021/j150318a001
105. Duan Y., Pfeiffer H., Li B., Romero-Ibarra I. C., Sorescu D. C., Luebke D. R., Halley J. W. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach // Phys. Chem. Chem. Phys. 2013. V. 15, N 32. p. 13538—13558. DOI: 10.1039/c3cp51659h
106. Migge H. Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system // J. Nuclear Mater. 1988. V. 151, N 2. P. 101—107. DOI: 10.1016/0022-3115(88)90061-X
107. Kulkarni N. S., Besmann T. M., Spear K. E. Thermodynamic optimization of lithia-alumina // J. Am. Ceram. Soc. 2008. V. 91, N 12. P. 4074—4083. DOI: 10.1111/j.1551-2916.2008.02753.x
108. Zuev M. G. Subsolidus phase relations in the Al2O3-Li2O-Ta2O5 (Nb2O5) systems // Russ. J. Inorg. Chem. 2007. V. 52, N 3. P. 424—426. DOI: 10.1134/S0036023607030217
109. Konar B., Van Ende M.-A., Jung I.-H. Critical evaluation and thermodynamic optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems // Metall. Mater. Trans. B. 2018. V. 49, N 5. P. 2917—2944. DOI: 10.1007/s11663-018-1349-x
110. Konar B., Kim D.-G., Jung I.-H. Coupled phase diagram experiments and thermodynamic optimization of the binary Li2O-MgO and Li2O-CaO systems and ternary Li2O-MgO-CaO system // Ceram. Int. 2017. V. 43, N 16. P. 13055—13062. DOI: 10.1016/j.ceramint.2017.06.143
111. Ferriol M., Dakki A., Cohen-Adad M. T., Foulon G., Brenier A., Boulon G. Growth and characterization of MgO-doped single-crystal fibers of lithium niobate in relation to high temperature phase equilibria in the ternary system Li2O-Nb2O5-MgO // J. Crystal Growth. 1997. V. 178, N 4. P. 529—538. DOI: 10.1016/S0022-0248(97)00002-X
112. Caccavale F., Chakraborty P., Mansour I., Gianello G., Mazzoleni M., Elena M. A secondary-ion-mass spectrometry study of magnesium diffusion in lithium niobate // J. Appl. Phys. 1994. V. 76, N 11. P. 7552—7558. DOI: 10.1063/1.357988
113. Bremer T., Hertel P., Oelschig S., Sommerfeldt R., Heiland W. Depth profiling of magnesium- and titanium-doped LiNbO3 waveguides // Thin Solid Films. 1989. V. 175. P. 235—239. DOI: 10.1016/0040-6090(89)90833-X
114. Koyama C., Nozawa J., Fujiwara K., Uda S. Effect of point defects on Curie temperature of lithium niobate // J. Am. Ceram. Soc. 2017. V. 100, N 3. P. 1118—1124. DOI: 10.1111/jace.14701
115. Palatnikov M. N., Biryukova I. V., Makarova O. V., Efremov V. V., Kravchenko O. E., Skiba V. I., Sidorov N. V., Efremov I. N. Growth of heavily doped LiNbO3<Zn> crystals // Inorganic Mater. 2015. V. 51, N 4. P. 375—379. DOI: 10.1134/S0020168515040123
116. Paul M., Tabuchi M., West A. R. Defect structure of Ni,Co-doped LiNbO3 and LiTaO3 // Chem. Mater. 1997. V. 9, N 12. P. 3206—3214. DOI: 10.1021/cm970511t
117. Grabmaier B. C., Otto F. Growth and investigation of MgO-doped LiNbO3 // J. Crystal Growth. 1986. V. 79, N 1–3. P. 682—688. DOI: 10.1016/0022-0248(86)90537-3
118. Hao L., Li Y., Zhu J., Wu Z., Deng J., Liu X., Zhang W. Fabrication and electrical properties of LiNbO3/ZnO/n-Si heterojunction // AIP Advances. 2013. V. 3, N 4. P. 042106. DOI: 10.1063/1.4800705
119. Gupta V., Bhattacharya P., Yuzyuk Y. I., Katiyar R. S., Tomar M., Sreenivas K. Growth and characterization of c-axis oriented LiNbO3 film on a transparent conducting Al : ZnO inter-layer on Si // J. Mater. Res. 2004. V. 19, N 8. P. 2235—2239. DOI: 10.1557/JMR.2004.0322
120. Lau C.-S., Wei P.-K., Su C.-W., Wang W.-S. Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides // IEEE Photonics Technol. Lett. 1992. V. 4, N 8. P. 872—875. DOI: 10.1109/68.149892
121. Ohlendorf G., Richter D., Sauerwald J., Fritze H. High-temperature electrical conductivity and electro-mechanical properties of stoichiometric lithium niobate // Diffusion Fundamentals. 2008. V. 8. P. 6.1—6.7. URL: https://diffusion.uni-leipzig.de/pdf/volume8/diff_fund_8(2008)6.pdf
122. Schmidt R. V., Kaminow I. P. Metal-diffused optical waveguides in LiNbO3 // Appl. Phys. Lett. 1974. V. 25, N 8. P. 458—460. DOI: 10.1063/1.1655547
123. Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide // J. Appl. Phys. 1979. V. 50, N 7. P. 4599—4603. DOI: 10.1063/1.326568
124. Thaniyavarn S., Findakly T., Booher D., Moen J. Domain inversion effects in Ti-LiNbO3 integrated optical devices // Appl. Phys. Lett. 1985. V. 46, N 10. P. 933—935. DOI: 10.1063/1.95825
125. Nozawa T., Miyazawa S. Ferroelectric microdomains in Ti-diffused LiNbO3 optical devices // Jpn. J. Appl. Phys. 1996. V. 35, N 1R. P. 107—113. DOI: 10.1143/JJAP.35.107
126. Lim E. J., Fejer M. M., Byer R. L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide // Electron. Lett. 1989. V. 25, N 3. P. 174. DOI: 10.1049/el:19890127
127. Lim E. J., Hertz H. M., Bortz M. L., Fejer M. M. Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. 1991. V. 59, N 18. P. 2207—2209. DOI: 10.1063/1.106071
128. Cao X., Srivastava R., Ramaswamy R. V. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO3 channel waveguides by a second-order grating // Opt. Lett. 1992. V. 17, N 8. P. 592. DOI: 10.1364/OL.17.000592
129. Hua P.-R., Dong J.-J., Ren K., Chen Z.-X. Erasure of ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide by Li-rich vapor-transport equilibration // J. Alloys Compd. 2015. V. 626. P. 203—207. DOI: 10.1016/j.jallcom.2014.12.001
130. Guenais B., Baudet M., Minier M., Le Cun M. Phase equilibria and curie temperature in the LiNbO3-xTiO2 system, investigated by DTA and x-ray diffraction // Mater. Res. Bull. 1981. V. 16, N 6. P. 643—653. DOI: 10.1016/0025-5408(81)90263-4
131. Bordui P. F., Norwood R. G., Jundt D. H., Fejer M. M. Preparation and characterization of off-congruent lithium niobate crystals // J. Appl. Phys. 1992. V. 71, N 2. P. 875—879. DOI: 10.1063/1.351308
132. Caccavale F., Chakraborty P., Quaranta A., Mansour I., Gianello G., Bosso S., Corsini R., Mussi G. Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides // J. Appl. Phys. 1995. V. 78, N 9. P. 5345—5350. DOI: 10.1063/1.359713
133. Izquierdo G., West A. R. Phase equilibria in the system Li2O-TiO2 // Mater. Res. Bull. 1980. V. 15, N 11. P. 1655—1660. DOI: 10.1016/0025-5408(80)90248-2
134. Villafuerte-Castrejón M. E., Aragón-Piña A., Valenzuela R., West A. R. Compound and solid-solution formation in the system Li2O-Nb2O5-TiO2 // J. Solid State Chem. 1987. V. 71, N 1. P. 103—108. DOI: 10.1016/0022-4596(87)90147-2
135. Rice C. E., Holmes R. J. A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3 // J. Appl. Phys. 1986. V. 60, N 11. P. 3836—3839. DOI: 10.1063/1.337777
136. Jackel J. L., Ramaswamy V., Lyman S. P. Elimination of out-diffused surface guiding in titanium-diffused LiNbO3 // Appl. Phys. Lett. 1981. V. 38, N 7. P. 509—511. DOI: 10.1063/1.92433
137. Ranganath T. R., Wang S. Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides // Appl. Phys. Lett. 1977. V. 30, N 8. P. 376—379. DOI: 10.1063/1.89438
138. Chen B., Pastor A. C. Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1977. V. 30, N 11. P. 570—571. DOI: 10.1063/1.89263
139. Baron C., Cheng H., Gupta M. C. Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals // Appl. Phys. Lett. 1995. V. 481, N 1996. P. 481. DOI: 10.1063/1.116420
140. Burns W. K., Bulmer C. H., West E. J. Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides // Appl. Phys. Lett. 1978. V. 33, N 1. P. 70—72. DOI: 10.1063/1.90149
141. Miyazawa S., Guglielmi R., Carenco A. A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide // Appl. Phys. Lett. 1977. V. 31, N 11. P. 742—744. DOI: 10.1063/1.89523
142. Tangonan G. L., Barnoski M. K., Lotspeich J. F., Lee A. High optical power capabilities of Ti-diffused LiTaO3 waveguide modulator structures // Appl. Phys. Lett. 1977. V. 30, N 5. P. 238—239. DOI: 10.1063/1.89348
143. Rice C. E., Jackel J. L. HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange // J. Solid State Chem. 1982. V. 41, N 3. P. 308—314. DOI: 10.1016/0022-4596(82)90150-5
144. Jackel J. L., Rice C. E. Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: The role of hydrogen // Appl. Phys. Lett. 1982. V. 41, N 6. P. 508—510. DOI: 10.1063/1.93589
145. Jackel J. L., Rice C. E., Veselka J. J. Proton exchange for high-index waveguides in LiNbO3 // Appl. Phys. Lett. 1982. V. 41, N 7. P. 607—608. DOI: 10.1063/1.93615
146. Jackel J. L., Rice C. E. Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3 // Ferroelectrics. 1981. V. 38, N 1. P. 801—804. DOI: 10.1080/00150198108209543
147. Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040603. DOI: 10.1063/1.4931601
148. Ganshin V. A., Korkishko Y. N. H:LiNbO3 waveguides: effects of annealing // Opt. Commun. 1991. V. 86, N 6. P. 523—530. DOI: 10.1016/0030-4018(91)90156-8
149. Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3 // Appl. Phys. Lett. 1990. V. 56, N 16. P. 1535—1536. DOI: 10.1063/1.103213
150. Tourlog A., Nakamura K. Influence of proton-exchange conditions on ferroelectric domain inversion caused in LiTaO3 crystals // Proc. IEEE International Symposium on Applications of Ferroelectrics, 1994. P. 222—225. DOI: 10.1109/ISAF.1994.522343
151. Åhlfeldt H., Webjörn J., Arvidsson G., Ahlfeldt H., Webjorn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides // IEEE Photonics Technol. Lett. 1991. V. 3, N 7. P. 638—639. DOI: 10.1109/68.87938
152. Mizuuchi K., Yamamoto K. Characteristics of periodically domain-inverted LiTaO3 // J. Appl. Phys. 1992. V. 72, N 11. P. 5061—5069. DOI: 10.1063/1.352035
153. Mizuuchi K., Yamamoto K., Taniuchi T. Second-harmonic generation of blue light in a LiTaO3 waveguide // Appl. Phys. Lett. 1991. V. 58, N 24. P. 2732. DOI: 10.1063/1.104769
154. Mizuuchi K., Yamamoto K., Taniuchi T. Fabrication of first-order periodically domain-inverted structure in LiTaO3 // Appl. Phys. Lett. 1991. V. 59, N 13. P. 1538—1540. DOI: 10.1063/1.106275
155. Yamamoto K., Mizuuchi K. Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide // IEEE Photonics Technol. Lett. 1992. V. 4, N 5. P. 435—437. DOI: 10.1109/68.136477
156. Åhlfeldt H., Webjörn J. Single-domain layers formed in multidomain LiTaO3 by proton exchange and heat treatment // Appl. Phys. Lett. 1994. V. 64, N 1. P. 7—9. DOI: 10.1063/1.110875
157. Mizuuchi K., Yamamoto K., Sato H. Domain inversion in LiTaO3 using proton exchange followed by heat treatment // J. Appl. Phys. 1994. V. 75, N 3. P. 1311—1318. DOI: 10.1063/1.356409
158. Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N.-B. Domain inversion in LiNbO3 by proton exchange and quick heat treatment // Appl. Phys. Lett. 1994. V. 65, N 5. P. 558—560. DOI: 10.1063/1.112295
159. Zhu S.-N., Zhu Y.-Y., Zhang Z.-Y., Shu H., Hong J.-F., Ge C.-Z., Ming N.-B. The mechanism for domain inversion in LiNbO3 by proton exchange and rapid heat treatment // J. Phys.: Condensed Matter. 1995. V. 7, N 7. P. 1437—1440. DOI: 10.1088/0953-8984/7/7/023
160. Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Shu H., Wang H.-F., Hong J.-F., Ge C.-Z., Ming N.-B. Study on the formation mechanism of a complex domain structure in LiNbO3 // J. Appl. Phys. 1995. V. 77, N 8. P. 4136—4138. DOI: 10.1063/1.359502
161. Zhu Y., Zhu S., Zhang Z., Shu H., Hong J., Ge C., Ming N. Formation of single-domain layers in multidomain LiNbO3 crystals by proton exchange and quick heat treatment // Appl. Phys. Lett. 1995. V. 66, N 4. P. 408—409. DOI: 10.1063/1.114038
162. Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Ming N.-B. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3 // Phys. Status Solidi (a). 1996. V. 153, N 1. P. 275—279. DOI: 10.1002/pssa.2211530128
163. Kawaguchi T., Kitayama H., Imaeda M., Fukuda T. Domain-inverted growth of LiNbO3 films by liquid-phase epitaxy // J. Crystal Growth. 1997. V. 178, N 4. P. 524—528. DOI: 10.1016/S0022-0248(97)00003-1
164. Tamada H., Yamada A., Saitoh M. LiNbO3 thin-film optical waveguide grown by liquid phase epitaxy and its application to second-harmonic generation // J. Appl. Phys. 1991. V. 70, N 5. P. 2536—2541. DOI: 10.1063/1.349409
165. Ming N.-B., Hong J.-F., Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals // J. Mater. Sci. 1982. V. 17, N 6. P. 1663—1670. DOI: 10.1007/BF00540793
166. Bender G., Meisen S., Herres N., Wild C., Koidl P. Deformation-induced ferroelectric domain pinning in chromium doped LiNbO3 // J. Crystal Growth. 1995. V. 152, N 4. P. 307—313. DOI: 10.1016/0022-0248(95)00150-6
167. Uda S., Tiller W. A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3 // J. Crystal Growth. 1992. V. 121, N 1–2. P. 93—110. DOI: 10.1016/0022-0248(92)90179-M
168. Bermúdez V., Callejo D., Caccavale F., Segato F., Agulló-Rueda F., Diéguez E. On the compositional nature of bulk doped periodic poled lithium niobate crystals // Solid State Commun. 2000. V. 114, N 10. P. 555—559. DOI: 10.1016/S0038-1098(00)00086-7
169. Bermúdez V., Serrano M. D., Dutta P. S., Diéguez E. On the opposite domain nature of Er-doped lithium niobate crystals // Solid State Commun. 1999. V. 109, N 9. P. 605—609. DOI: 10.1016/S0038-1098(98)00589-4
170. Capmany J., Montoya E., Bermúdez V., Callejo D., Diéguez E., Bausá L. E. Self-frequency doubling in Yb3+ doped periodically poled LiNbO3:MgO bulk crystal // Appl. Phys. Lett. 2000. V. 76, N 11. P. 1374—1376. DOI: 10.1063/1.126036
171. Chen J., Zhou Q., Hong J. F., Wang W. S., Ming N. B., Feng D., Fang C. G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 // J. Appl. Phys. 1989. V. 66, N 1. P. 336—341. DOI: 10.1063/1.343879
172. Sorokin N. G., Antipov V. V., Blistanov A. A. The regular domain structure in LiNbO3 and LiTaO3 // Ferroelectrics. 1995. V. 167, N 1. P. 267—274. DOI: 10.1080/00150199508232322
173. Antipov V. V., Bykov A. S., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate single crystals by electrothermal method // Ferroelectrics. 2008. V. 374, N 1. P. 65—72. DOI: 10.1080/00150190802427127
174. Miyazawa S. Response to "Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices”" // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104—1105. DOI: 10.1063/1.96612
175. Glass A. M. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3 // Phys. Rev. 1968. V. 172, N 2. P. 564—571. DOI: 10.1103/PhysRev.172.564
176. Savage A. Pyroelectricity and spontaneous polarization in LiNbO3 // J. Appl. Phys. 1966. V. 37, N 8. P. 3071—3072. DOI: 10.1063/1.1703164
177. Seibert H., Sohler W. Ferroelectric microdomain reversal on Y-cut LiNbO3 surfaces // Proc. SPIE, Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications. 1991. V. 1362. P. 370. DOI: 10.1117/12.24553
178. Pendergrass L. L. Ferroelectric Microdomains in Lithium Niobate // IEEE Ultrasonics Symposium, 1987. P. 231—236. DOI: 10.1109/ULTSYM.1987.198960
179. Jorgensen P. J., Bartlett R. W. High temperature transport processes in lithium niobate // J. Phys. Chem. Solids. 1969. V. 30, N 12. P. 2639—2648. DOI: 10.1016/0022-3697(69)90037-7
180. Tomeno I., Matsumura S. Elastic and dielectric properties of LiNbO3 // J. Phys. Soc. Jpn. 1987. V. 56, N 1. P. 163—177. DOI: 10.1143/JPSJ.56.163
181. Peuzin J. C. Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices” (Appl. Phys. Lett. 1985. V. 46. P. 933) // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104. DOI: 10.1063/1.97016
182. Huanosta A., West A. R. The electrical properties of ferroelectric LiTaO3 and its solid solutions // J. Appl. Phys. 1987. V. 61, N 12. P. 5386—5391. DOI: 10.1063/1.338279
183. Choi J. K., Auh K. H. Stress induced domain formation in LiNbO3 single crystals // J. Mater. Sci. 1996. V. 31, N 3. P. 643—647. DOI: 10.1007/BF00367880
184. Lehnert H., Boysen H., Frey F., Hewat A., Radaelli P. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3 // Zeitschrift für Kristallographie – Crystalline Materials. 1997. V. 212, N 10. DOI: 10.1524/zkri.1997.212.10.712
185. Sugii K., Fukuma M., Iwasaki H. A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods // J. Mater. Sci. 1978. V. 13, N 3. P. 523—533. DOI: 10.1007/BF00541802
186. Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications // J. Materiomics. 2019. V. 5, N 1. P. 73—80. DOI: 10.1016/j.jmat.2018.10.001
187. Nye J. F. Physical Properties of Crystals. Oxford: Clarendon Press, 1985. 352 p.
188. Rice C. E. The structure and properties of Li1-xHxNbO3 // J. Solid State Chem. 1986. V. 64, N 2. P. 188—199. DOI: 10.1016/0022-4596(86)90138-6
189. Åhlfeldt H., Webjörn J., Thomas P. A., Teat S. J. Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3 // J. Appl. Phys. 1995. V. 77, N 9. P. 4467—4476. DOI: 10.1063/1.359477
190. Ueda T., Takai Y., Shimizu R., Yagyu H., Matsushima T., Souma M. Cross-sectional transmission electron microscopic observation of etch hillocks and etch pits in LiTaO3 single crystal // Jpn. J. Appl. Phys. 2000. V. 39, N 3A. P. 1200—1202. DOI: 10.1143/JJAP.39.1200
191. Malovichko G., Cerclier O., Estienne J., Grachev V., Kokanyan E., Boulesteix C. Lattice constants of K- and Mg-doped LiNbO3. Comparison with nonstoichiometric lithium niobate // J. Phys. Chem. Solids. 1995. V. 56, N 9. P. 1285—1289. DOI: 10.1016/0022-3697(95)00058-5
192. Nakamura K., Fukazawa K., Yamada K., Saito S. An ultrasonic transducer for second imaging using a LiNbO3 plate with a local ferroelectric inversion layer // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006. V. 53, N 3. P. 651—655. DOI: 10.1109/TUFFC.2006.1610575
193. Huang L., Jaeger N. A. F. Discussion of domain inversion in LiNbO3 // Appl. Phys. Lett. 1994. V. 65, N 14. P. 1763—1765. DOI: 10.1063/1.112911
194. Mizuuchi K., Yamamoto K., Sato H. Fabrication of periodic domain inversion in an x-cut LiTaO3 // Appl. Phys. Lett. 1993. V. 62, N 16. P. 1860—1862. DOI: 10.1063/1.109524
195. Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. 2011. V. 83, N 18. P. 184104. DOI: 10.1103/PhysRevB.83.184104
196. Wan Z., Xi Y., Wang Q., Lu Y., Zhu Y., Ming N. Growth of LiNbO3 crystal with periodic ferroelectric domain structure by current-induction and its acoustic application // Ferroelectrics. 2001. V. 252, N 1. P. 273—280. DOI: 10.1080/00150190108016266
197. Xi Y., Cross L. E. Lithium niobate bicrystal // Ferroelectrics. 1981. V. 38, N 1. P. 829—832. DOI: 10.1080/00150198108209550
198. Smits J. G., Dalke S. I., Cooney T. K. The constituent equations of piezoelectric bimorphs // Sensors and Actuators A: Phys. 1991. V. 28, N 1. P. 41—61. DOI: 10.1016/0924-4247(91)80007-C
199. Smits J. G., Ballato A. Dynamic admittance matrix of piezoelectric cantilever bimorphs // J. Microelectromechanical Systems. 1994. V. 3, N 3. P. 105—112. DOI: 10.1109/84.311560
200. Goli J., Smits J. G., Ballato A. Dynamic bimorph matrix of end-loaded bimorphs // Proc. IEEE International Frequency Control Symposium (49th Annual Symposium), 1995. P. 794—797. DOI: 10.1109/FREQ.1995.484086
201. Malinkovich M. D., Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Teixeira B. M. S., Parkhomenko Y. N. Modelling of vibration sensor based on bimorph structure // J. Nano- Electron. Phys. 2019. V. 11, N 2. P. 02033-1—02033-8. DOI: 10.21272/jnep.11(2).02033
202. Uchino K. Piezoelectric ceramics for transducers / In: Ultrasonic Transducers, K. Nakamura (Ed.) Cambridge: Woodhead Publishing, 2012. P. 70—116. DOI: 10.1533/9780857096302.1.70
203. Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer // Jpn. J. Appl. Phys. 1987. V. 26, N S2. P. 198. DOI: 10.7567/JJAPS.26S2.198
204. Kubasov I. V., Popov A. V., Bykov A. S., Temirov A. A., Kislyuk A. M., Zhukov R. N., Kiselev D. A., Chichkov M. V., Malinkovich M. D., Parkhomenko Yu. N. Deformation anisotropy of Y+128°-cut single crystalline bidomain wafers of lithium niobate // Russ. Microelectron. 2017. V. 46, N 8. P. 557—563. DOI: 10.1134/S1063739717080108
205. Warner A. W., Onoe M., Coquin G. A. determination of elastic and piezoelectric constants for crystals in class (3m) // J. Acoust. Soc. Am. 1967. V. 42, N 6. P. 1223—1231. DOI: 10.1121/1.1910709
206. Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer // Jpn. J. Appl. Phys. 1993. V. 32, N 5B. P. 2415—2417. DOI: 10.1143/JJAP.32.2415
207. Buryy O., Sugak D., Syvorotka I., Yakhnevych U., Suhak Y., Ubizskii S., Fritze H. Simulation, making and testing of the actuator of precise positioning based on the bimorph plate of lithium niobate // IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2019. P. 148—152. DOI: 10.1109/MEMSTECH.2019.8817401
208. Kawamata A., Hosaka H., Morita T. Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator // Sensors and Actuators A: Phys. 2007. V. 135, N 2. P. 782—786. DOI: 10.1016/j.sna.2006.08.025
209. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. 1989. V. 93, N 1. P. 211—216. DOI: 10.1080/00150198908017348
210. Ueda M., Sawada H., Tanaka A., Wakatsuki N. Piezoelectric actuator using a LiNbO3 bimorph for an optical switch // IEEE Symposium on Ultrasonics, 1990. P. 1183—1186. DOI: 10.1109/ULTSYM.1990.171548
211. Nakamura K., Kurosawa Y., Ishikawa K. Tunable optical filters using a LiNbO3 torsional actuator with a Fabry–Perot etalon // Appl. Phys. Lett. 1996. V. 68, N 20. P. 2799—2800. DOI: 10.1063/1.116611
212. Nakamura K. Piezoelectric applications of ferroelectric single crystals // Proc. 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. P. 389–394. DOI: 10.1109/ISAF.2002.1195950
213. Blagov A. E., Bykov A. S., Kubasov I. V., Malinkovich M. D., Pisarevskii Y. V., Targonskii A. V., Eliovich I. A., Kovalchuk M. V. An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal // Instruments and Experimental Techniques. 2016. V. 59, N 5. DOI: 10.1134/S0020441216050043
214. Blagov A. E., Kulikov A. G., Marchenkov N. V., Pisarevsky Y. V., Kovalchuk M. V. Bimorph actuator: a new instrument for time-resolved x-ray diffraction and spectroscopy // Experimental Techniques. 2017. V. 41, N 5. P. 517—523. DOI: 10.1007/s40799-017-0194-1
215. Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes // Sensors and Actuators A: Phys. 2019. V. 291. P. 68—74. DOI: 10.1016/j.sna.2019.03.041
216. Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode // Sensors and Actuators A: Phys. 2019. V. 293. P. 48—55. DOI: 10.1016/j.sna.2019.04.028
217. Пат. 196011 (РФ). Трехкоординатное устройство позиционирования / И. В. Кубасов, А. М. Кислюк, А. В. Турутин, А. А. Темиров, М. Д. Малинкович, Ю. Н. Пархоменко, А. А. Полисан, 2019.
218. Kubasov I. V., Kislyuk A. M., Turutin A. V., Temirov A. A., Ksenich S. V., Malinkovich M. D., Parkhomenko Y. N. Use of ferroelectric single-crystal bimorphs for precise positioning in scanning probe microscope // Microscopy and Microanalysis. 2020. V. 26. DOI: 10.1017/S1431927620023417
219. Kubasov I. V., Kislyuk A. M., Turutin A. V., Shportenko A. S., Temirov A. A., Malinkovich M. D., Parkhomenko Y. N. Cell stretcher based on single-crystal bimorph piezoelectric actuators // Microscopy and Microanalysis. 2020. V. 26. DOI: 10.1017/S1431927620022746
220. Uchino K. Advanced piezoelectric materials. Cambridge: Woodhead Publishing Limited, 2010. 848 p. DOI: 10.1533/9781845699758
221. Ma T., Wang J., Du J., Yuan L., Zhang Z., Zhang C. Effect of the ferroelectric inversion layer on resonance modes of LiNbO3 thickness-shear mode resonators // Appl. Phys. Express. 2012. V. 5, N 11. P. 116501. DOI: 10.1143/APEX.5.116501
222. Kugel V. D., Rosenman G., Shur D. Piezoelectric properties of bidomain LiNbO3 crystals // J. Appl. Phys. 1995. V. 78, N 9. P. 5592—5596. DOI: 10.1063/1.359681
223. Huang D., Yang J. Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer // Mech. Adv. Mater. Struct. 2020. V. 27, N 10. P. 831—839. DOI: 10.1080/15376494.2018.1500664
224. Nakamura K., Tourlog A. Propagation characteristics of leaky surface acoustic waves and surface acoustic waves on LiNbO3 substrates with a ferrroelectric inversion layer // Jpn. J. Appl. Phys. 1995. V. 34, N 9B. P. 5273—5275. DOI: 10.1143/JJAP.34.5273
225. Nakamura K., Fukazawa K., Yamada K., Saito S. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2003. V. 50, N 11. P. 1558—1562. DOI: 10.1109/TUFFC.2003.1251139
226. Wang Z., Zhao M., Yang J. A piezoelectric gyroscope with self-equilibrated coriolis force based on overtone thickness-shear modes of a lithium niobate plate with an inversion layer // IEEE Sensors J. 2014. P. 1—1. DOI: 10.1109/JSEN.2014.2366235
227. Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A novel vibration sensor based on bidomain lithium niobate crystal // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 106—108. DOI: 10.12693/APhysPolA.134.106
228. Burdin D. A., Chashin D. V., Ekonomov N. A., Fetisov Y. K., Stashkevich A. A. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect // J. Magn. Magn. Mater. 2016. V. 405. P. 244—248. DOI: 10.1016/j.jmmm.2015.12.079
229. Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 7. P. 1102—1119. DOI: 10.1109/TUFFC.2017.2694342
230. Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars // J. Phys. D: Appl. Phys. 2018. V. 51, N 21. P. 214001. DOI: 10.1088/1361-6463/aabda4
231. Bichurin M. I., Sokolov O. V., Leontiev V. S., Petrov R. V., Tatarenko A. S., Semenov G. A., Ivanov S. N., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kholkin A. L., Sobolev N. A. Magnetoelectric effect in the bidomain lithium niobate/nickel/metglas gradient structure // Phys. Status Solidi (B). 2020. V. 257, N 3. DOI: 10.1002/pssb.201900398
232. Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. 2018. V. 112, N 26. P. 262906. DOI: 10.1063/1.5038014
233. Пат. 188677 (РФ). Магнитоэлектрический сенсор магнитных полей / А. В. Турутин, И. В. Кубасов, А. М. Кислюк, М. Д. Малинкович, С. П. Кобелева, Ю. Н. Пархоменко, Н. А. Соболев, 2019.
234. Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork // J. Magn. Magn. Mater. 2019. V. 486. DOI: 10.1016/j.jmmm.2019.04.061
235. Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Pakhomov O. V., Sobolev N. A., Kholkin A. L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019. V. 66, N 9. P. 1480—1487. DOI: 10.1109/TUFFC.2019.2908396
236. Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. Vibrational power harvester based on lithium niobate bidomain plate // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 90—92. DOI: 10.12693/APhysPolA.134.90
237. Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Sobolev N. A., Kholkin A. L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 67, N 6. P. 1219—1229. DOI: 10.1109/TUFFC.2020.2967842
238. Пат. 2643151 (РФ). Радиоизотопный механо-электрический генератор / М. Д. Малинкович, А. С. Быков, Р. Н. Жуков, И. В. Кубасов, Ю. Н. Пархоменко, Д. А. Киселев, А. А. Полисан, А. А. Темиров, С. В. Ксенич, 2016.
Рецензия
Для цитирования:
Кубасов И.В., Кислюк А.М., Турутин А.В., Малинкович М.Д., Пархоменко Ю.Н. Бидоменные сегнетоэлектрические кристаллы: свойства и перспективы применения. Известия высших учебных заведений. Материалы электронной техники. 2020;23(1):5-56. https://doi.org/10.17073/1609-3577-2020-1-5-56
For citation:
Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Yu.N. Bidomain ferroelectric crystals: properties and prospects of application. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(1):5-56. (In Russ.) https://doi.org/10.17073/1609-3577-2020-1-5-56