Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Бидоменные сегнетоэлектрические кристаллы: свойства и перспективы применения

https://doi.org/10.17073/1609-3577-2020-1-

Аннотация

В обзоре изложены основные достижения в области формирования бидоменной структуры и приповерхностных инверсных доменов в кристаллах одноосных сегнетоэлектриков ниобата лития и танталата лития. Проведен анализ методов формирования бидоменной структуры, кратко описаны способы контроля доменной структуры в кристаллах. Приведены основные физические модели, предложенные в литературе для объяснения эффекта образования инверсных доменов. Кратко перечислены способы выбора кристаллографического среза для создания устройств, в которых используются бидоменные кристаллы. Приведены примеры реализации устройств на основе бидоменных кристаллов – актюаторов, сенсоров, акустических преобразователей, систем сбора бросовой энергии.

Об авторах

И. В. Кубасов
НИТУ "МИСиС"
Россия

кафедра Материаловедения полупроводников и диэлектриков

Кубасов Илья Викторович



А. М. Кислюк
НИТУ "МИСиС"
Россия
Кислюк Александр Михайлович


А. В. Турутин
НИТУ "МИСиС"
Россия
Турутин Андрей Владимирович


М. Д. Малинкович
НИТУ "МИСиС"
Россия
Малинкович Михаил Давыдович


Ю. Н. Пархоменко
НИТУ "МИСиС" АО «Государственный научно-исследовательский и проектный институт редкометаллической промышленности «Гиредмет»
Россия
Пархоменко Юрий Николаевич


Список литературы

1. Properties of Lithium Niobate / ed. Wong K.K. London, England: The Institution of Electrical Engineers, – 2002. 429 p.

2. Volk T., Wöhlecke M. Lithium Niobate. Berlin, Heidelberg: Springer Berlin Heidelberg, – 2008. – Vol. 115. DOI: https://doi.org/10.1007/978-3-540-70766-0.

3. Wooten E.L., Kissa K.M., Yi-Yan A., et al. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Top. Quantum Electron. – 2000. – Vol. 6. – № 1. – P. 69–82. DOI: https://doi.org/10.1109/2944.826874.

4. Turner R.C., Fuierer P.A., Newnham R.E., et al. Materials for high temperature acoustic and vibration sensors: A review // Appl. Acoust. – 1994. – Vol. 41. – № 4. – P. 299–324. DOI: https://doi.org/10.1016/0003-682X(94)90091-4.

5. Ruppel C.C.W. Acoustic Wave Filter Technology–A Review // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2017. – Vol. 64. – № 9. – P. 1390–1400. DOI: https://doi.org/10.1109/TUFFC.2017.2690905.

6. Passaro V.M.N., Magno F. Holographic gratings in photorefractive materials: A review // Laser Phys. – 2007. – Vol. 17. – № 3. – P. 231–243. DOI: https://doi.org/10.1134/S1054660X07030012.

7. Kwak C.H., Kim G.Y., Javidi B. Volume holographic optical encryption and decryption in photorefractive LiNbO3: Fe crystal // Opt. Commun. – 2019. – Vol. 437. – P. 95–103. DOI: https://doi.org/10.1016/j.optcom.2018.12.049.

8. Chauvet M., Henrot F., Bassignot F., et al. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon // J. Opt. – 2016. – Vol. 18. – № 8. – P. 085503. DOI: https://doi.org/10.1088/2040-8978/18/8/085503.

9. Tomita I. Highly efficient cascaded difference-frequency generation in periodically poled LiNbO3 devices with resonators // IEEJ Trans. Electr. Electron. Eng. – 2018. – Vol. 13. – № 8. – P. 1214–1215. DOI: https://doi.org/10.1002/tee.22687.

10. Sharapova P.R., Luo K.H., Herrmann H., et al. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits // New J. Phys. – 2017. – Vol. 19. – № 12. – P. 123009. DOI: https://doi.org/10.1088/1367-2630/aa9033.

11. Zaltron A., Bettella G., Pozza G., et al. Integrated optics on Lithium Niobate for sensing applications / ed. Baldini F., Homola J., Lieberman R.A. – 2015. – P. 950608. DOI: https://doi.org/10.1117/12.2178457.

12. Janaideh M. Al, Rakheja S., Su C.-Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator // Mechatronics. – 2009. – Vol. 19. – № 5. – P. 656–670. DOI: https://doi.org/10.1016/j.mechatronics.2009.02.008.

13. Devasia S., Eleftheriou E., Moheimani S.O.R. A Survey of Control Issues in Nanopositioning // IEEE Trans. Control Syst. Technol. – 2007. – Vol. 15. – № 5. – P. 802–823. DOI: https://doi.org/10.1109/TCST.2007.903345.

14. Hall D.A. Nonlinearity in piezoelectric ceramics // J. Mater. Sci. – 2001. – Vol. 36. – № 19. – P. 4575–4601. DOI: https://doi.org/10.1023/A:1017959111402.

15. Zhou D., Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading // Acta Mater. – 2006. – Vol. 54. – № 5. – P. 1389–1396. DOI: https://doi.org/10.1016/j.actamat.2005.11.010.

16. Zhao X., Zhang C., Liu H., et al. Analysis of Hysteresis-Free Creep of the Stack Piezoelectric Actuator // Math. Probl. Eng. – 2013. – Vol. 2013. – P. 1–10. DOI: https://doi.org/10.1155/2013/187262.

17. Croft D., Shed G., Devasia S. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application // J. Dyn. Syst. Meas. Control. IEEE, – 2001. – Vol. 123. – № 1. – P. 35–43. DOI: https://doi.org/10.1115/1.1341197.

18. Kubasov I. V., Kislyuk A.M., Turutin A. V., et al. Low-Frequency Vibration Sensor with a Sub-nm Sensitivity Using a Bidomain Lithium Niobate Crystal // Sensors. – 2019. – Vol. 19. – № 3. – P. 614. DOI: https://doi.org/10.3390/s19030614.

19. Nakamura K., Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices // Proceedings., IEEE Ultrasonics Symposium. IEEE, – 1989. – P. 309–318. DOI: https://doi.org/10.1109/ULTSYM.1989.67000.

20. Nakamura K. Antipolarity Domains Formed by Heat Treatment of Ferroelectric Crystals and Their Applications // Jpn. J. Appl. Phys. – 1992. – Vol. 31. – № S1. – P. 9. DOI: https://doi.org/10.7567/JJAPS.31S1.9.

21. Zhang Z.-Y., Zhu Y., Wang H., et al. Domain inversion in LiNbO3 and LiTaO3 induced by proton exchange // Phys. B Condens. Matter. – 2007. – Vol. 398. – № 1. – P. 151–158. DOI: https://doi.org/10.1016/j.physb.2007.05.011.

22. Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. Taylor & Francis Group, – 1995. – Vol. 172. – № 1. – P. 7–18. DOI: https://doi.org/10.1080/00150199508018452.

23. Кузьминов Ю.С. Ниобат и танталат лития: материалы для нелинейной оптики. Москва: Наука, – 1975. 223 p.

24. Weis R.S., Gaylord T.K. Lithium niobate: Summary of physical properties and crystal structure // Appl. Phys. A Solids Surfaces. – 1985. – Vol. 37. – № 4. – P. 191–203. DOI: https://doi.org/10.1007/BF00614817.

25. Toyoura K., Ohta M., Nakamura A., et al. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate // J. Appl. Phys. AIP Publishing LLC, – 2015. – Vol. 118. – № 6. – P. 064103. DOI: https://doi.org/10.1063/1.4928461.

26. Zhang Z.-G., Abe T., Moriyoshi C., et al. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction // Appl. Phys. Express. – 2018. – Vol. 11. – № 7. – P. 071501. DOI: https://doi.org/10.7567/APEX.11.071501.

27. Sanna S., Schmidt W.G. Lithium niobate X -cut, Y-cut, and Z-cut surfaces from ab initio theory // Phys. Rev. B. – 2010. – Vol. 81. – № 21. – P. 214116. DOI: https://doi.org/10.1103/PhysRevB.81.214116.

28. IEEE 176-1987 Standard on Piezoelectricity. New York: IEEE, – 1988. 66 p. DOI: https://doi.org/10.1109/IEEESTD.1988.79638.

29. Abrahams S.C., Buehler E., Hamilton W.C., et al. Ferroelectric lithium tantalate - 3. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K // J. Phys. Chem. Solids. – 1973. – Vol. 34. – № 3. – P. 521–532. DOI: https://doi.org/10.1016/0022-3697(73)90047-4.

30. Nakamura K., Hosoya M., Shimizu H. Estimation of Thickness of Ferroelectric Inversion Layers in LiTaO3 Plates by Measuring Piezoelectric Responses // Jpn. J. Appl. Phys. – 1990. – Vol. 29. – № S1. – P. 95. DOI: https://doi.org/10.7567/JJAPS.29S1.95.

31. Nakamura K., Ando H., Shimizu H. Partial Domain Inversion in LiNbO3 Plates and its Applications to Piezoelectric Devices // IEEE 1986 Ultrasonics Symposium. IEEE, – 1986. – P. 719–722. DOI: https://doi.org/10.1109/ULTSYM.1986.198828.

32. Boyd G.D., Miller R.C., Nassau K., et al. LiNbO3: an efficient phase matchable nonlinear optical material // Appl. Phys. Lett. – 1964. – Vol. 5. – № 11. – P. 234–236. DOI: https://doi.org/10.1063/1.1723604.

33. Kugel V.D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals // Ferroelectr. Lett. Sect. – 1993. – Vol. 15. – № 3–4. – P. 55–60. DOI: https://doi.org/10.1080/07315179308204239.

34. Малинкович М.Д., Кубасов И.В., Темиров А.А., et al. Пироэлектрические свойства бидоменных кристаллов ниобата лития // Фундаментальные проблемы радиоэлектронного приборостроения. – 2018. – Vol. 18. – № 2. – P. 426–429.

35. Nassau K., Levinstein H.J., Loiacono G.M. The domain structure and etching of ferroelectric lithium niobate // Appl. Phys. Lett. – 1965. – Vol. 6. – № 11. – P. 228–229. DOI: https://doi.org/10.1063/1.1754147.

36. Yamada T., Niizeki N., Toyoda H. Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals // Jpn. J. Appl. Phys. IOP Publishing, – 1967. – Vol. 6. – № 2. – P. 151–155. DOI: https://doi.org/10.1143/JJAP.6.151.

37. Sones C.L., Mailis S., Brocklesby W.S., et al. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations // J. Mater. Chem. – 2002. – Vol. 12. – № 2. – P. 295–298. DOI: https://doi.org/10.1039/b106279b.

38. Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation // J. Light. Technol. – 1989. – Vol. 7. – № 10. – P. 1597–1600. DOI: https://doi.org/10.1109/50.39103.

39. Niizeki N., Yamada T., Toyoda H. Growth Ridges, Etched Hillocks, and Crystal Structure of Lithium Niobate // Jpn. J. Appl. Phys. – 1967. – Vol. 6. – № 3. – P. 318–327. DOI: https://doi.org/10.1143/JJAP.6.318.

40. Sones C.L. Domain Engineering Techniques and Devices in Lithium Niobate. University of Southampton, – 2003. 167 p.

41. Güthner P., Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy // Appl. Phys. Lett. – 1992. – Vol. 61. – № 9. – P. 1137–1139. DOI: https://doi.org/10.1063/1.107693.

42. Soergel E. Piezoresponse force microscopy (PFM) // J. Phys. D. Appl. Phys. – 2011. – Vol. 44. – № 46. – P. 464003. DOI: https://doi.org/10.1088/0022-3727/44/46/464003.

43. Kalinin S. V., Bonnell D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces // Phys. Rev. B. – 2002. – Vol. 65. – № 12. – P. 125408. DOI: https://doi.org/10.1103/PhysRevB.65.125408.

44. Kubasov I. V., Timshina M.S., Kiselev D.A., et al. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallogr. Reports. – 2015. – Vol. 60. – № 5. – P. 700–705. DOI: https://doi.org/10.1134/S1063774515040136.

45. Kubasov I. V., Kislyuk A.M., Bykov A.S., et al. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallogr. Reports. – 2016. – Vol. 61. – № 2. – P. 258–262. DOI: https://doi.org/10.1134/S1063774516020115.

46. Kislyuk A.M., Ilina T.S., Kubasov I. V., et al. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy // Mod. Electron. Mater. – 2019. – Vol. 5. – № 2. – P. 51–60. DOI: https://doi.org/10.3897/j.moem.5.2.51314.

47. Кислюк А.М., Ильина Т.С., Кубасов И.В., et al. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии // Известия высших учебных заведений. Материалы электронной техники. – 2019. – Vol. 22. – № 1. – P. 5–17. DOI: https://doi.org/10.17073/1609-3577-2019-1-5-17.

48. Irzhak D. V., Kokhanchik L.S., Punegov D. V., et al. Study of the specific features of lithium niobate crystals near the domain walls // Phys. Solid State. – 2009. – Vol. 51. – № 7. – P. 1500–1502. DOI: https://doi.org/10.1134/S1063783409070452.

49. Yin Q.R., Zeng H.R., Li G.R., et al. Near-field acoustic microscopy of ferroelectrics and related materials // Mater. Sci. Eng. B. – 2003. – Vol. 99. – № 1–3. – P. 2–5. DOI: https://doi.org/10.1016/S0921-5107(02)00438-5.

50. Yin Q.R., Zeng H.R., Yu H.F., et al. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material // J. Mater. Sci. – 2006. – Vol. 41. – № 1. – P. 259–270. DOI: https://doi.org/10.1007/s10853-005-7244-2.

51. Bozhevolnyi S.I., Pedersen K., Skettrup T., et al. Far- and near-field second-harmonic imaging of ferroelectric domain walls // Opt. Commun. – 1998. – Vol. 152. – № 4–6. – P. 221–224. DOI: https://doi.org/10.1016/S0030-4018(98)00176-X.

52. Neacsu C.C., van Aken B.B., Fiebig M., et al. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 // Phys. Rev. B. – 2009. – Vol. 79. – № 10. – P. 100107. DOI: https://doi.org/10.1103/PhysRevB.79.100107.

53. Sheng Y., Best A., Butt H.-J., et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation // Opt. Express. – 2010. – Vol. 18. – № 16. – P. 16539. DOI: https://doi.org/10.1364/OE.18.016539.

54. Kämpfe T., Reichenbach P., Schröder M., et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation // Phys. Rev. B. – 2014. – Vol. 89. – № 3. – P. 035314. DOI: https://doi.org/10.1103/PhysRevB.89.035314.

55. Cherifi-Hertel S., Bulou H., Hertel R., et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy // Nat. Commun. – 2017. – Vol. 8. – № 1. – P. 15768. DOI: https://doi.org/10.1038/ncomms15768.

56. Berth G., Hahn W., Wiedemeier V., et al. Imaging of the Ferroelectric Domain Structures by Confocal Raman Spectroscopy // Ferroelectrics. – 2011. – Vol. 420. – № 1. – P. 44–48. DOI: https://doi.org/10.1080/00150193.2011.594774.

57. Rüsing M., Neufeld S., Brockmeier J., et al. Imaging of 180° ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism // Phys. Rev. Mater. – 2018. – Vol. 2. – № 10. – P. 103801. DOI: https://doi.org/10.1103/PhysRevMaterials.2.103801.

58. Dierolf V., Sandmann C., Kim S., et al. Ferroelectric domain imaging by defect-luminescence microscopy // J. Appl. Phys. – 2003. – Vol. 93. – № 4. – P. 2295–2297. DOI: https://doi.org/10.1063/1.1538333.

59. Otto T., Grafström S., Chaib H., et al. Probing the nanoscale electro-optical properties in ferroelectrics // Appl. Phys. Lett. – 2004. – Vol. 84. – № 7. – P. 1168–1170. DOI: https://doi.org/10.1063/1.1647705.

60. Pei S.-C., Ho T.-S., Tsai C.-C., et al. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics // Opt. Express. – 2011. – Vol. 19. – № 8. – P. 7153. DOI: https://doi.org/10.1364/OE.19.007153.

61. Tasson M., Legal H., Peuzin J.C., et al. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi. – 1975. – Vol. 31. – № 2. – P. 729–737. DOI: https://doi.org/10.1002/pssa.2210310246.

62. Ballman A.A., Brown H. Ferroelectric domain reversal in lithium metatantalate // Ferroelectrics. – 1972. – Vol. 4. – № 1. – P. 189–194. DOI: https://doi.org/10.1080/00150197208235761.

63. Shur V.Y. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 // J. Mater. Sci. – 2006. – Vol. 41. – № 1. – P. 199–210. DOI: https://doi.org/10.1007/s10853-005-6065-7.

64. Rosenman G., Urenski P., Agronin A., et al. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy // Appl. Phys. Lett. – 2003. – Vol. 82. – № 1. – P. 103–105. DOI: https://doi.org/10.1063/1.1534410.

65. Shur V.Y., Chezganov D.S., Smirnov M.M., et al. Domain switching by electron beam irradiation of Z+ -polar surface in Mg-doped lithium niobate // Appl. Phys. Lett. – 2014. – Vol. 105. – № 5. – P. 052908. DOI: https://doi.org/10.1063/1.4891842.

66. Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields // Appl. Phys. Lett. – 1996. – Vol. 69. – № 11. – P. 1565–1567. DOI: https://doi.org/10.1063/1.117031.

67. Volk T.R., Kokhanchik L.S., Gainutdinov R. V., et al. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: A review // J. Adv. Dielectr. – 2018. – Vol. 08. – № 02. – P. 1830001. DOI: https://doi.org/10.1142/S2010135X18300013.

68. Makio S., Nitanda F., Ito K., et al. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange // Appl. Phys. Lett. American Institute of Physics, – 1992. – Vol. 61. – № 26. – P. 3077–3079. DOI: https://doi.org/10.1063/1.107990.

69. Pendergrass L.L. Ferroelectric microdomain reversal at room temperature in lithium niobate // J. Appl. Phys. – 1987. – Vol. 62. – № 1. – P. 231–236. DOI: https://doi.org/10.1063/1.339186.

70. Bermúdez V., Dutta P.S., Serrano M.D., et al. In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth // J. Cryst. Growth. – 1996. – Vol. 169. – № 2. – P. 409–412. DOI: https://doi.org/10.1016/S0022-0248(96)00742-7.

71. Tasson M., Legal H., Gay J.C., et al. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. Taylor & Francis Group, – 1976. – Vol. 13. – № 1. – P. 479–481. DOI: https://doi.org/10.1080/00150197608236646.

72. Luh Y.S., Feigelson R.S., Fejer M.M., et al. Ferroelectric domain structures in LiNbO3 single-crystal fibers // J. Cryst. Growth. – 1986. – Vol. 78. – № 1. – P. 135–143. DOI: https://doi.org/10.1016/0022-0248(86)90510-5.

73. Luh Y.S.S., Fejer M.M.M., Byer R.L.L., et al. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications // J. Cryst. Growth. North-Holland, – 1987. – Vol. 85. – № 1–2. – P. 264–269. DOI: https://doi.org/10.1016/0022-0248(87)90233-8.

74. Bykov A.S., Grigoryan S.G., Zhukov R.N., et al. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russ. Microelectron. – 2014. – Vol. 43. – № 8. – P. 536–542. DOI: https://doi.org/10.1134/S1063739714080034.

75. Быков А.С., Григорян С.Г., Жуков Р.Н., et al. Формирование бидоменной структуры в пластинах монокристаллических сегнетоэлектриков стационарным распределением температурных полей // Известия вузов. Материалы электронной техники. – 2013. – Vol. 61. – № 1. – P. 11.

76. Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. – 1987. – Vol. 50. – № 20. – P. 1413–1414. DOI: https://doi.org/10.1063/1.97838.

77. Barns R.L., Carruthers J.R. Lithium tantalate single crystal stoichiometry // J. Appl. Crystallogr. International Union of Crystallography (IUCr), – 1970. – Vol. 3. – № 5. – P. 395–399. DOI: https://doi.org/10.1107/s0021889870006490.

78. Fukuma M., Noda J. Li in- and out-diffusion processes in LiNbO3 // Jpn. J. Appl. Phys. – 1981. – Vol. 20. – № 10. – P. 1861–1865. DOI: https://doi.org/10.1143/JJAP.20.1861.

79. Carruthers J.R., Kaminow I.P., Stulz L.W. Diffusion Kinetics and Optical Waveguiding Properties of Outdiffused Layers in Lithium Niobate and Lithium Tantalate // Appl. Opt. – 1974. – Vol. 13. – № 10. – P. 2333. DOI: https://doi.org/10.1364/AO.13.002333.

80. Kaminow I.P., Carruthers J.R. Optical waveguiding layers in LiNbO3 and LiTaO3 // Appl. Phys. Lett. – 1973. – Vol. 22. – № 7. – P. 326–328. DOI: https://doi.org/10.1063/1.1654657.

81. Svaasand L.O., Eriksrud M., Nakken G., et al. Solid-solution range of LiNbO3 // J. Cryst. Growth. – 1974. – Vol. 22. – № 3. – P. 230–232. DOI: https://doi.org/10.1016/0022-0248(74)90099-2.

82. Allemann J.A., Xia Y., Morriss R.E., et al. Crystallization behavior of Li1–5 xTa1+xO3 glasses synthesized from liquid precursors // J. Mater. Res. – 1996. – Vol. 11. – № 09. – P. 2376–2387. DOI: https://doi.org/10.1557/JMR.1996.0301.

83. Bordui P.F., Norwood R.G., Bird C.D., et al. Stoichiometry issues in single‐crystal lithium tantalate // J. Appl. Phys. American Institute of Physics, – 1995. – Vol. 78. – № 7. – P. 4647–4650. DOI: https://doi.org/10.1063/1.359811.

84. Holman R.L. Novel Uses of Gravimetry in the Processing of Crystalline Ceramics // Processing of Crystalline Ceramics (Materials Science Research, Vol. 11) / ed. Palmour H. (III), Davis R.F., Hare T.M. New York: Plenum Press, – 1978. – P. 343–357.

85. Евланова Н.Ф., Рашкович Л.Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития // Физика твердого тела. – 1974. – Vol. 16. – № 2. – P. 555–557.

86. Evlanova N.L., Rashkovich L.N. Annealing Effect on Domain-Structure of Lithium Meta-Niobate Single-Crystals // Sov. Phys. Solid State. – 1974. – Vol. 16. – P. 354.

87. Ohnishi N. An Etching Study on a Heat-Induced Layer at the Positive-Domain Surface of LiNbO3 // Jpn. J. Appl. Phys. – 1977. – Vol. 16. – № 6. – P. 1069–1070. DOI: https://doi.org/10.1143/JJAP.16.1069.

88. Hsu W.-Y., Gupta M.C. Domain inversion in MgO-diffused LiNbO3 // Appl. Opt. – 1993. – Vol. 32. – № 12. – P. 2049. DOI: https://doi.org/10.1364/AO.32.002049.

89. Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals // Appl. Phys. Lett. American Institute of Physics, – 1993. – Vol. 62. – № 23. – P. 2902–2904. DOI: https://doi.org/10.1063/1.109191.

90. Kugel V.D., Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions // Appl. Phys. Lett. – 1994. – Vol. 65. – № 19. – P. 2398–2400. DOI: https://doi.org/10.1063/1.112687.

91. Åhlfeldt H. Single-domain layers formed in heat-treated LiTaO3 // Appl. Phys. Lett. American Institute of Physics, – 1994. – Vol. 64. – № 24. – P. 3213–3215. DOI: https://doi.org/10.1063/1.111340.

92. Pryakhina V.I., Greshnyakov E.D., Lisjikh B.I., et al. As-grown domain structure in lithium tantalate with spatially nonuniform composition // Ferroelectrics. – 2018. – Vol. 525. – № 1. – P. 47–53. DOI: https://doi.org/10.1080/00150193.2018.1432926.

93. Rosenman G., Kugel V.D., Angert N. Domain inversion in LiNbO3 optical waveguides // Ferroelectrics. – 1994. – Vol. 157. – № 1. – P. 111–116. DOI: https://doi.org/10.1080/00150199408229491.

94. Kubasov I. V. Completely Charged Domain Walls in Reduced Bidomain Lithium Niobate: A New Approach to Domain Wall Nanoelectronics (to be published). – 2020.

95. Yamamoto K., Mizuuchi K., Takeshige K., et al. Characteristics of periodically domain‐inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation // J. Appl. Phys. – 1991. – Vol. 70. – № 4. – P. 1947–1951. DOI: https://doi.org/10.1063/1.349477.

96. Fujimura M., Suhara T., Nishihara H. Ferroelectric-domain inversion induced by SiO2 cladding for LiNbO3 waveguide SHG // Electron. Lett. – 1991. – Vol. 27. – № 13. – P. 1207. DOI: https://doi.org/10.1049/el:19910752.

97. Fujimura M., Suhara T., Nishihara H. LiNbO3 waveguide SHG devices based on a ferroelectric domain-inverted grating induced by SiO2 cladding // Electron. Commun. Japan (Part II Electron. – 1992. – Vol. 75. – № 12. – P. 40–49. DOI: https://doi.org/10.1002/ecjb.4420751205.

98. Webjorn J., Laurell F., Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide // IEEE Photonics Technol. Lett. – 1989. – Vol. 1. – № 10. – P. 316–318. DOI: https://doi.org/10.1109/68.43360.

99. Naumova I.I., Evlanova N.F., Gliko O.A., et al. Czochralski-grown lithium niobate with regular domain structure // Ferroelectrics. – 1997. – Vol. 190. – № 1. – P. 107–112. DOI: https://doi.org/10.1080/00150199708014101.

100. Kracek F.C. The Binary System Li2O–SiO2 // J. Phys. Chem. – 1930. – Vol. 34. – № 12. – P. 2641–2650. DOI: https://doi.org/10.1021/j150318a001.

101. Duan Y., Pfeiffer H., Li B., et al. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach // Phys. Chem. Chem. Phys. – 2013. – Vol. 15. – № 32. – P. 13538. DOI: https://doi.org/10.1039/c3cp51659h.

102. Migge H. Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system // J. Nucl. Mater. – 1988. – Vol. 151. – № 2. – P. 101–107. DOI: https://doi.org/10.1016/0022-3115(88)90061-X.

103. Kulkarni N.S., Besmann T.M., Spear K.E. Thermodynamic Optimization of Lithia-Alumina // J. Am. Ceram. Soc. – 2008. – Vol. 91. – № 12. – P. 4074–4083. DOI: https://doi.org/10.1111/j.1551-2916.2008.02753.x.

104. Zuev M.G. Subsolidus phase relations in the Al2O3-Li2O-Ta2O5 (Nb2O5) systems // Russ. J. Inorg. Chem. – 2007. – Vol. 52. – № 3. – P. 424–426. DOI: https://doi.org/10.1134/S0036023607030217.

105. Konar B., Van Ende M.-A., Jung I.-H. Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 Systems // Metall. Mater. Trans. B. – 2018. – Vol. 49. – № 5. – P. 2917–2944. DOI: https://doi.org/10.1007/s11663-018-1349-x.

106. Konar B., Kim D.-G., Jung I.-H. Coupled phase diagram experiments and thermodynamic optimization of the binary Li2O-MgO and Li2O-CaO systems and ternary Li2O-MgO-CaO system // Ceram. Int. – 2017. – Vol. 43. – № 16. – P. 13055–13062. DOI: https://doi.org/10.1016/j.ceramint.2017.06.143.

107. Ferriol M., Dakki A., Cohen-Adad M.T., et al. Growth and characterization of MgO-doped single-crystal fibers of lithium niobate in relation to high temperature phase equilibria in the ternary system Li2O-Nb2O5-MgO // J. Cryst. Growth. – 1997. – Vol. 178. – № 4. – P. 529–538. DOI: https://doi.org/10.1016/S0022-0248(97)00002-X.

108. Schmidt R. V., Kaminow I.P. Metal‐diffused optical waveguides in LiNbO3 // Appl. Phys. Lett. – 1974. – Vol. 25. – № 8. – P. 458–460. DOI: https://doi.org/10.1063/1.1655547.

109. Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide // J. Appl. Phys. American Institute of Physics, – 1979. – Vol. 50. – № 7. – P. 4599–4603. DOI: https://doi.org/10.1063/1.326568.

110. Thaniyavarn S., Findakly T., Booher D., et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices // Appl. Phys. Lett. – 1985. – Vol. 46. – № 10. – P. 933–935. DOI: https://doi.org/10.1063/1.95825.

111. Nozawa T., Miyazawa S. Ferroelectric Microdomains in Ti-diffused LiNbO3 Optical Devices // Jpn. J. Appl. Phys. – 1996. – Vol. 35. – № Part 1, No. 1A. – P. 107–113. DOI: https://doi.org/10.1143/JJAP.35.107.

112. Ueda T., Takai Y., Shimizu R., et al. Cross-Sectional Transmission Electron Microscopic Observation of Etch Hillocks and Etch Pits in LiTaO 3 Single Crystal // Jpn. J. Appl. Phys. – 2000. – Vol. 39. – № Part 1, No. 3A. – P. 1200–1202. DOI: https://doi.org/10.1143/JJAP.39.1200.

113. Lim E.J., Fejer M.M., Byer R.L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide // Electron. Lett. – 1989. – Vol. 25. – № 3. – P. 174. DOI: https://doi.org/10.1049/el:19890127.

114. Lim E.J., Hertz H.M., Bortz M.L., et al. Infrared radiation generated by quasi‐phase‐matched difference‐frequency mixing in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. – 1991. – Vol. 59. – № 18. – P. 2207–2209. DOI: https://doi.org/10.1063/1.106071.

115. Cao X., Srivastava R., Ramaswamy R. V. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO3 channel waveguides by a second-order grating // Opt. Lett. – 1992. – Vol. 17. – № 8. – P. 592. DOI: https://doi.org/10.1364/OL.17.000592.

116. Hua P.-R., Dong J.-J., Ren K., et al. Erasure of ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide by Li-rich vapor-transport equilibration // J. Alloys Compd. – 2015. – Vol. 626. – P. 203–207. DOI: https://doi.org/10.1016/j.jallcom.2014.12.001.

117. Izquierdo G., West A.R. Phase equilibria in the system Li2O-TiO2 // Mater. Res. Bull. – 1980. – Vol. 15. – № 11. – P. 1655–1660. DOI: https://doi.org/10.1016/0025-5408(80)90248-2.

118. Villafuerte-Castrejón M.E., Aragón-Piña A., Valenzuela R., et al. Compound and solid-solution formation in the system Li2O-Nb2O5-TiO2 // J. Solid State Chem. – 1987. – Vol. 71. – № 1. – P. 103–108. DOI: https://doi.org/10.1016/0022-4596(87)90147-2.

119. Jackel J.L., Ramaswamy V., Lyman S.P. Elimination of out‐diffused surface guiding in titanium‐diffused LiNbO3 // Appl. Phys. Lett. – 1981. – Vol. 38. – № 7. – P. 509–511. DOI: https://doi.org/10.1063/1.92433.

120. Ranganath T.R., Wang S. Suppression of Li2O out‐diffusion from Ti‐diffused LiNbO3 optical waveguides // Appl. Phys. Lett. – 1977. – Vol. 30. – № 8. – P. 376–379. DOI: https://doi.org/10.1063/1.89438.

121. Chen B., Pastor A.C. Elimination of Li2O out‐diffusion waveguide in LiNbO3 and LiTaO3 // Appl. Phys. Lett. – 1977. – Vol. 30. – № 11. – P. 570–571. DOI: https://doi.org/10.1063/1.89263.

122. Baron C., Cheng H., Gupta M.C. Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals // Appl. Phys. Lett. – 1995. – Vol. 481. – № 1996. – P. 481. DOI: https://doi.org/10.1063/1.116420.

123. Burns W.K., Bulmer C.H., West E.J. Application of Li2O compensation techniques to Ti‐diffused LiNbO3 planar and channel waveguides // Appl. Phys. Lett. – 1978. – Vol. 33. – № 1. – P. 70–72. DOI: https://doi.org/10.1063/1.90149.

124. Miyazawa S., Guglielmi R., Carenco A. A simple technique for suppressing Li2O out‐diffusion in Ti:LiNbO3 optical waveguide // Appl. Phys. Lett. – 1977. – Vol. 31. – № 11. – P. 742–744. DOI: https://doi.org/10.1063/1.89523.

125. Tangonan G.L., Barnoski M.K., Lotspeich J.F., et al. High optical power capabilities of Ti‐diffused LiTaO3 waveguide modulator structures // Appl. Phys. Lett. – 1977. – Vol. 30. – № 5. – P. 238–239. DOI: https://doi.org/10.1063/1.89348.

126. Rice C.E., Jackel J.L. HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange // J. Solid State Chem. Academic Press, – 1982. – Vol. 41. – № 3. – P. 308–314. DOI: https://doi.org/10.1016/0022-4596(82)90150-5.

127. Jackel J.L., Rice C.E. Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: The role of hydrogen // Appl. Phys. Lett. – 1982. – Vol. 41. – № 6. – P. 508–510. DOI: https://doi.org/10.1063/1.93589.

128. Jackel J.L., Rice C.E., Veselka J.J. Proton exchange for high-index waveguides in LiNbO3 // Appl. Phys. Lett. American Institute of Physics, – 1982. – Vol. 41. – № 7. – P. 607–608. DOI: https://doi.org/10.1063/1.93615.

129. Jackel J.L., Rice C.E. Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3 // Ferroelectrics. – 1981. – Vol. 38. – № 1. – P. 801–804. DOI: https://doi.org/10.1080/00150198108209543.

130. Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Applied Physics Reviews. AIP Publishing LLC, – 2015. – Vol. 2. – № 4. – P. 040603. DOI: https://doi.org/10.1063/1.4931601.

131. Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3 // Appl. Phys. Lett. American Institute of Physics, – 1990. – Vol. 56. – № 16. – P. 1535–1536. DOI: https://doi.org/10.1063/1.103213.

132. Tourlog A., Nakamura K. Influence of proton-exchange conditions on ferroelectric domain inversion caused in LiTaO3 crystals // Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics. IEEE. – P. 222–225. DOI: https://doi.org/10.1109/ISAF.1994.522343.

133. Åhlfeldt H., Webjörn J., Arvidsson G. Periodic Domain Inversion and Generation of Blue Light in Lithium Tantalate Waveguides // IEEE Photonics Technol. Lett. – 1991. – Vol. 3. – № 7. – P. 638–639. DOI: https://doi.org/10.1109/68.87938.

134. Ming N. Ben, Hong J.F., Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals // J. Mater. Sci. – 1982. – Vol. 17. – № 6. – P. 1663–1670. DOI: https://doi.org/10.1007/BF00540793.

135. Bender G., Meisen S., Herres N., et al. Deformation-induced ferroelectric domain pinning in chromium doped LiNbO3 // J. Cryst. Growth. – 1995. – Vol. 152. – № 4. – P. 307–313. DOI: https://doi.org/10.1016/0022-0248(95)00150-6.

136. Chen J., Zhou Q., Hong J.F., et al. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 // J. Appl. Phys. – 1989. – Vol. 66. – № 1. – P. 336–341. DOI: https://doi.org/10.1063/1.343879.

137. Wan Z., Xi Y., Wang Q., et al. Growth of LiNbO3 crystal with periodic ferroelectric domain structure by current-induction and its acoustic application // Ferroelectrics. – 2001. – Vol. 252. – № 1. – P. 273–280. DOI: https://doi.org/10.1080/00150190108016266.

138. Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., et al. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3 // Phys. Status Solidi. – 1996. – Vol. 153. – № 1. – P. 275–279. DOI: https://doi.org/10.1002/pssa.2211530128.

139. Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. – 2011. – Vol. 83. – № 18. – P. 184104. DOI: https://doi.org/10.1103/PhysRevB.83.184104.

140. Lu Y.L., Lu Y.Q., Cheng X.F., et al. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice // Appl. Phys. Lett. American Institute of Physics, – 1996. – Vol. 68. – № 19. – P. 2642–2644. DOI: https://doi.org/10.1063/1.116267.

141. Bermúdez V., Callejo D., Caccavale F., et al. On the compositional nature of bulk doped periodic poled lithium niobate crystals // Solid State Commun. – 2000. – Vol. 114. – № 10. – P. 555–559. DOI: https://doi.org/10.1016/S0038-1098(00)00086-7.

142. Bermúdez V., Callejo D., Caccavale F., et al. On the effect of Li diffusion in Er-doped bulk periodic poled lithium niobate crystals // J. Cryst. Growth. – 1999. – Vol. 205. – № 3. – P. 328–332. DOI: https://doi.org/10.1016/S0022-0248(99)00289-4.

143. Sada C., Argiolas N., Bazzan M. On the dynamics of periodically-poled lithium niobate formation by off-center Czochralski technique // Appl. Phys. Lett. – 2001. – Vol. 79. – № 14. – P. 2163–2165. DOI: https://doi.org/10.1063/1.1408603.

144. Bermúdez V., Serrano M.D., Diéguez E. Bulk periodic poled lithium niobate crystals doped with Er and Yb // J. Cryst. Growth. – 1999. – Vol. 200. – № 1–2. – P. 185–190. DOI: https://doi.org/10.1016/S0022-0248(98)01279-2.

145. Nakamura K., Fukazawa K., Yamada K., et al. An ultrasonic transducer for second imaging using a LiNbO3 plate with a local ferroelectric inversion layer // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2006. – Vol. 53. – № 3. – P. 651–655. DOI: https://doi.org/10.1109/TUFFC.2006.1610575.

146. Smits J.G., Dalke S.I., Cooney T.K. The constituent equations of piezoelectric bimorphs // Sensors Actuators A Phys. – 1991. – Vol. 28. – № 1. – P. 41–61. DOI: https://doi.org/10.1016/0924-4247(91)80007-C.

147. Smits J.G., Ballato A. Dynamic admittance matrix of piezoelectric cantilever bimorphs // J. Microelectromechanical Syst. – 1994. – Vol. 3. – № 3. – P. 105–112. DOI: https://doi.org/10.1109/84.311560.

148. Goli J., Smits J.G., Ballato A. Dynamic bimorph matrix of end-loaded bimorphs // Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium). IEEE, – 1995. – P. 794–797. DOI: https://doi.org/10.1109/FREQ.1995.484086.

149. Malinkovich M.D., Kubasov I. V., Kislyuk A.M., et al. Modelling of Vibration Sensor Based on Bimorph Structure // J. Nano- Electron. Phys. – 2019. – Vol. 11. – № 2. – P. 02033-1-02033–02038. DOI: https://doi.org/10.21272/jnep.11(2).02033.

150. Kubasov I. V., Popov A. V., Bykov A.S., et al. Deformation Anisotropy of Y + 128°-Cut Single Crystalline Bidomain Wafers of Lithium Niobate // Russ. Microelectron. – 2017. – Vol. 46. – № 8. – P. 557–563. DOI: https://doi.org/10.1134/S1063739717080108.

151. Nye J.F. Physical Properties of Crystals. Oxford: Clarendon Press — Oxford, – 1985. 352 p.

152. Warner A.W., Onoe M., Coquin G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) // J. Acoust. Soc. Am. – 1967. – Vol. 42. – № 6. – P. 1223–1231. DOI: https://doi.org/10.1121/1.1910709.

153. Nakamura K., Nakamura T., Yamada K. Torsional Actuators Using LiNbO3 Plates with an Inversion Layer // Jpn. J. Appl. Phys. – 1993. – Vol. 32. – № Part 1, No. 5B. – P. 2415–2417. DOI: https://doi.org/10.1143/JJAP.32.2415.

154. Buryy O., Sugak D., Syvorotka I., et al. Simulation, Making and Testing of the Actuator of Precise Positioning Based on the Bimorph Plate of Lithium Niobate // 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, – 2019. – P. 148–152. DOI: https://doi.org/10.1109/MEMSTECH.2019.8817401.

155. Kawamata A., Hosaka H., Morita T. Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator // Sensors Actuators A Phys. – 2007. – Vol. 135. – № 2. – P. 782–786. DOI: https://doi.org/10.1016/j.sna.2006.08.025.

156. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. – 1989. – Vol. 93. – № 1. – P. 211–216. DOI: https://doi.org/10.1080/00150198908017348.

157. Ueda M., Sawada H., Tanaka A., et al. Piezoelectric actuator using a LiNbO3 bimorph for an optical switch // IEEE Symposium on Ultrasonics. IEEE. – P. 1183–1186. DOI: https://doi.org/10.1109/ULTSYM.1990.171548.

158. Nakamura K., Kurosawa Y., Ishikawa K. Tunable optical filters using a LiNbO3 torsional actuator with a Fabry–Perot etalon // Appl. Phys. Lett. – 1996. – Vol. 68. – № 20. – P. 2799–2800. DOI: https://doi.org/10.1063/1.116611.

159. Nakamura K. Piezoelectric applications of ferroelectric single crystals // Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002. IEEE, – 2002. – P. 389–394. DOI: https://doi.org/10.1109/ISAF.2002.1195950.

160. Blagov A.E., Bykov A.S., Kubasov I.V., et al. An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal // Instruments Exp. Tech. – 2016. – Vol. 59. – № 5. DOI: https://doi.org/10.1134/S0020441216050043.

161. Blagov A.E., Kulikov A.G., Marchenkov N.V., et al. Bimorph Actuator: a New Instrument for Time-Resolved X-ray Diffraction and Spectroscopy // Exp. Tech. – 2017. – Vol. 41. – № 5. – P. 517–523. DOI: https://doi.org/10.1007/s40799-017-0194-1.

162. Kulikov A., Blagov A., Marchenkov N., et al. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes // Sensors Actuators A Phys. – 2019. – Vol. 291. – P. 68–74. DOI: https://doi.org/10.1016/j.sna.2019.03.041.

163. Marchenkov N., Kulikov A., Targonsky A., et al. LiNbO3-based bimorph piezoactuator for fast X-Ray experiments: Resonant mode // Sensors Actuators A Phys. – 2019. – Vol. 293. – P. 48–55. DOI: https://doi.org/10.1016/j.sna.2019.04.028.

164. Кубасов И.В., Кислюк А.М., Турутин А.В., et al. Трехкоординатное устройство позиционирования: pat. RU 196011 U1 USA. Russia: Федеральная служба по интеллектуальной собственности Российской Федерации, – 2019. – P. 8.

165. Kubasov I. V., Kislyuk A.M., Turutin A. V., et al. Use of Ferroelectric Single-crystal Bimorphs for Precise Positioning in Scanning Probe Microscope (to be published). – 2020.

166. Kubasov I. V., Kislyuk A.M., Turutin A. V., et al. Cell Stretcher Based on Single-crystal Bimorph Piezoelectric Actuators (to be published). – 2020.

167. Advanced piezoelectric materials. 2nd ed. / ed. Uchino K. Cambridge: Woodhead Publishing Limited, – 2010. 696 p. DOI: https://doi.org/10.1533/9781845699758.

168. Nakamura K., Ando H., Shimizu H. Bending Vibrator Consisting of a LiNbO3 Plate with a Ferroelectric Inversion Layer // Jpn. J. Appl. Phys. – 1987. – Vol. 26. – № S2. – P. 198. DOI: https://doi.org/10.7567/JJAPS.26S2.198.

169. Ma T., Wang J., Du J., et al. Effect of the Ferroelectric Inversion Layer on Resonance Modes of LiNbO3 Thickness-Shear Mode Resonators // Appl. Phys. Express. – 2012. – Vol. 5. – № 11. – P. 116501. DOI: https://doi.org/10.1143/APEX.5.116501.

170. Kugel V.D., Rosenman G., Shur D. Piezoelectric properties of bidomain LiNbO3 crystals // J. Appl. Phys. – 1995. – Vol. 78. – № 9. – P. 5592–5596. DOI: https://doi.org/10.1063/1.359681.

171. Huang D., Yang J. Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer // Mech. Adv. Mater. Struct. – 2020. – Vol. 27. – № 10. – P. 831–839. DOI: https://doi.org/10.1080/15376494.2018.1500664.

172. Nakamura K., Tourlog A. Propagation Characteristics of Leaky Surface Acoustic Waves and Surface Acoustic Waves on LiNbO3 Substrates with a Ferrroelectric Inversion Layer // Jpn. J. Appl. Phys. – 1995. – Vol. 34. – № Part 1, No. 9B. – P. 5273–5275. DOI: https://doi.org/10.1143/JJAP.34.5273.

173. Nakamura K., Fukazawa K., Yamada K., et al. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2003. – Vol. 50. – № 11. – P. 1558–1562. DOI: https://doi.org/10.1109/TUFFC.2003.1251139.

174. Wang Z., Zhao M., Yang J. A Piezoelectric Gyroscope with Self-equilibrated Coriolis Force Based on Overtone Thickness-shear Modes of a Lithium Niobate Plate with an Inversion Layer // IEEE Sens. J. – 2014. – P. 1–1. DOI: https://doi.org/10.1109/JSEN.2014.2366235.

175. Kubasov I.V., Kislyuk A.M., Malinkovich M.D., et al. A Novel Vibration Sensor Based on Bidomain Lithium Niobate Crystal // Acta Phys. Pol. A. – 2018. – Vol. 134. – № 1. – P. 106–108. DOI: https://doi.org/10.12693/APhysPolA.134.106.

176. Vidal J. V., Turutin A. V., Kubasov I. V., et al. Equivalent Magnetic Noise in Magnetoelectric Laminates Comprising Bidomain LiNbO3 Crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2017. – Vol. 64. – № 7. – P. 1102–1119. DOI: https://doi.org/10.1109/TUFFC.2017.2694342.

177. Burdin D.A., Chashin D.V., Ekonomov N.A., et al. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect // J. Magn. Magn. Mater. – 2016. – Vol. 405. – P. 244–248. DOI: https://doi.org/10.1016/j.jmmm.2015.12.079.

178. Turutin A. V, Vidal J. V., Kubasov I. V., et al. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO 3 long bars // J. Phys. D. Appl. Phys. – 2018. – Vol. 51. – № 21. – P. 214001. DOI: https://doi.org/10.1088/1361-6463/aabda4.

179. Bichurin M.I., Sokolov O. V., Leontiev V.S., et al. Magnetoelectric Effect in the Bidomain Lithium Niobate/Nickel/Metglas Gradient Structure // Phys. status solidi. – 2019. – P. 1900398. DOI: https://doi.org/10.1002/pssb.201900398.

180. Turutin A. V., Vidal J. V., Kubasov I. V., et al. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. – 2018. – Vol. 112. – № 26. – P. 262906. DOI: https://doi.org/10.1063/1.5038014.

181. Турутин А.В., Кубасов И.В., Кислюк А.М., et al. Магнитоэлектрический сенсор магнитных полей: pat. RU 188677 U1 USA. Russia: Федеральная служба по интеллектуальной собственности Российской Федерации, – 2019. – P. 10.

182. Turutin A. V., Vidal J. V., Kubasov I. V., et al. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork // J. Magn. Magn. Mater. – 2019. – Vol. 486. – P. 165209. DOI: https://doi.org/10.1016/j.jmmm.2019.04.061.

183. Vidal J. V., Turutin A. V., Kubasov I. V., et al. Low-Frequency Vibration Energy Harvesting With Bidomain LiNbO3 Single Crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2019. – Vol. 66. – № 9. – P. 1480–1487. DOI: https://doi.org/10.1109/TUFFC.2019.2908396.

184. Kubasov I.V., Kislyuk A.M., Malinkovich M.D., et al. Vibrational Power Harvester Based on Lithium Niobate Bidomain Plate // Acta Phys. Pol. A. – 2018. – Vol. 134. – № 1. – P. 90–92. DOI: https://doi.org/10.12693/APhysPolA.134.90.

185. Vidal J. V., Kholkin A.L., Turutin A. V., et al. Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2020. – P. 1–1. DOI: https://doi.org/10.1109/TUFFC.2020.2967842.

186. Малинкович М.Д., Быков А.С., Жуков Р.Н., et al. Радиоизотопный механо-электрический генератор: pat. RU 2643151 C1 USA. Russia, – 2016. – P. 10.


Для цитирования:


Кубасов И.В., Кислюк А.М., Турутин А.В., Малинкович М.Д., Пархоменко Ю.Н. Бидоменные сегнетоэлектрические кристаллы: свойства и перспективы применения. Известия высших учебных заведений. Материалы электронной техники. 2020;23(1). https://doi.org/10.17073/1609-3577-2020-1-

For citation:


Kubasov I., Kislyuk A., Turutin A., Malinkovich M., Parkhomenko Y. Bidomain ferroelectric crystals: properties and prospects of application. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(1). https://doi.org/10.17073/1609-3577-2020-1-

Просмотров: 45


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)