Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Optimization of passivation in AlGaN/GaN heterostructure microwave transistor fabrication by ICP CVD

https://doi.org/10.17073/1609-3577-2020-2-127-133

Abstract

In present study is considered the influence of the regimes of passivating dielectric silicon nitride SiNx films deposition by the chemical vapor deposition in an inductively coupled plasma (ICP CVD) on the parameters of the high electron mobility transistors (HEMT) based on AlGaN/GaN heterostructures. By the investigation of dielectric material layers’ parameters was revealed the influence of RF and ICP generators power, working gases flows ratio on the films growth rate and perfection, also their effect on the CVC of passivated HEMT. With RF power increasing the deposition rate did not change, while its growth was observed with ICP power increasing. The transistor slope strongly decreases with RF power increasing, its maximum was achieved with a minimum RF power of 1 W. At the initial moment of deposition even at low values of RF power (at 3 W already) the transistor structure becomes completely inoperative. Shown, that the deposition process of dielectrics for the HEMT passivation must begin at the lowest possible RF power. An AlGaN/GaN UHF HEMT structure passivation process has been developed, allowing the deposition of conformal films and obtaining low drain-source currents in turn-off transistors without deterioration in the open state — at no more than 15 and 100 μA for 1,25 and 5 mm Т-gate width respectively (UG = –8 V and USD = 50 V).

About the Authors

A. A. Sleptsova
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Anastasia A. Sleptsova: Postgraduate Student



S. V. Chernykh
National University of Science and Technology MISiS; JSC “S&PE “Pulsar”
Russian Federation

4 Leninsky Prospekt, Moscow 119049;

27 Okruzhnoy Proezd, Moscow 105187

Sergey V. Chernykh: Assistant (1), Head of Laboratory (2)



D. A. Podgorny
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Dmitry A. Podgorny: Cand. Sci. (Phys.-Math.) Associate Professor, Deputy Head of the Department of Materials Science of Semiconductors and Dielectrics



I. A. Zhilnikov
JSC “S&PE “Pulsar”
Russian Federation

27 Okruzhnoy Proezd, Moscow 105187

Ilya A. Zhilnikov: Technician



References

1. Arendarenko A. A., Oreshkin V. A., Sveshnikov Yu. N., Tsyplenkov I. N. Trends in the Development of the Epitaxial Nitride Compounds Technology. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 1, pp. 5—15. (In Russ.). DOI: 10.17073/1609-3577-2015-1-5-15

2. Sun H., Liu M., Liu P., Lin X., Cui X., Chen J., Chen D. Performance optimization of lateral AlGaN/GaN HEMTs with cap gate on 150-mm silicon substrate. Solid-State Electronics, 2017, vol. 130, pp. 28—32. DOI: 10.1016/j.sse.2017.01.006

3. Sleptsov E. V., Chernykh A. V., Chernykh S. V., Dorofeev A. A., Gladysheva N. B., Kondakov M. N., Sleptsova A. A., Panichkin A. V., Konovalov M. P., Didenko S. I. Investigation of the thermal annealing effect on electrical properties of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures. J. Phys.: Conf. Series, 2017, vol. 816, p. 012039. DOI: 10.1088/1742-6596/816/1/012039

4. Kaushik J. K., Balakrishnan V. R., Mongia D., Kumar U., Dayal S., Panwar B. S., Muralidharan R. Investigation of surface related leakage current in AlGaN/GaN High Electron Mobility Transistors. Thin Solid Films, 2016, vol. 612, pp. 147—152. DOI: 10.1016/j.tsf.2016.06.003

5. Huang H., Sun Z., Cao Y., Li F., Zhang F., Wen Z., Zhang Z., Liang Y. C., Hu L. Investigation of surface traps-induced current collapse phenomenon in AlGaN/GaN high electron mobility transistors with Schottky gate structures. J. Phys. D: Appl. Phys., 2018, vol. 51, no. 34, p. 345102. DOI: 10.1088/1361-6463/aad455

6. Huang H., Liang Yu. C., Samudra G. S., Chang T.-F., Huang C.-F. Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Transactions On Power Electronics, 2014, vol. 29, no. 5, pp. 2164—2173. DOI: 10.1109/TPEL.2013.2288644

7. Enisherlova K. L., Medvedev B. K., Temper E. M., Korneev V. I. Influence of technological factors on the characteristics of ohmic contacts of powerful AlGaN/GaN/SiC HEMT. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2018, vol. 21, no. 3, pp. 182—193. (In Russ.). DOI: 10.17073/1609-3577-2018-3-182-193

8. Abgaryan K. K. Optimization problems of nanoscale semiconductor heterostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2016, vol. 19, no. 2, pp. 108—114. (In Russ.). DOI: 10.17073/1609-3577-2016-2-108-114

9. Chander S., Gupta S., Ajay, Gupta M. Enhancement of breakdown voltage in AlGaN/GaN HEMT using passivation technique for microwave application. Superlattices and Microstructures, 2018, vol. 120, pp. 217—222. DOI: 10.1016/j.spmi.2018.05.039

10. Zhu G., Liang G., Zhou Y., Chen X., Xu X., Feng X., Song A. Reactive evaporation of SiOx films for passivation of GaN high-electronmobility transistors. J. Phys. Chem. Solids, 2019, vol. 129, pp. 54—60. DOI: 10.1016/j.jpcs.2018.12.021

11. Zhu G., Wang H., Wang Y., Feng X., Song A. Performance enhancement of AlGaN/AlN/GaN high electron mobility transistors by thermally evaporated SiO passivation. Appl. Phys. Lett., 2016, vol. 109, no. 11, p. 113503. DOI: 10.1063/1.4962894

12. Arulkumaran S., Egawa T., Ishikawa H., Jimbo T., Sano Y. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride. Appl. Phys. Lett., 2004, vol. 84, no. 4, pp. 613—615. DOI: 10.1063/1.1642276

13. Kim H.-S., Han S.-W., Jang W.-H., Cho C.-H., Seo K.-S., Oh J., Cha H.-Y. Normally-off GaN-on-Si MISFET using PECVD SiON gate dielectric. IEEE Electron Device Lett., 2017, vol. 38, no. 8, pp. 1090—1093. DOI: 10.1109/LED.2017.2720719

14. Karouta F., Krämer M. C. J. C. M., Kwaspen J. J. M., Grzegorczyk A., Hageman P., Hoex B., Kessels W. M. M., Klootwijk J., Timmering E., Smit M. K. influence of the structural and compositional properties of PECVD silicon nitride layers on the passivation of AlGaN/GaN HEMTs. ECS Transactions, 2008, vol. 16, no. 7, pp. 181—191. DOI: 10.1149/1.2983174

15. Seidman L. A. Formation of three-dimensional structures in silicon carbide substrates by plasmochemistry etching. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 3, pp. 157—171. (In Russ.). DOI: 10.17073/1609-3577-2015-3-157-171

16. Lee J. J. Application of inductively coupled plasma to CVD and PVD. Surface & Coatings Technology, 2005, vol. 200, no. 1–4, pp. 31—34. DOI: 10.1016/j.surfcoat.2005.02.113

17. Dutta G., DasGupta N., DasGupta A. Low-temperature ICP-CVD SiNx as gate dielectric for GaN-based MIS-HEMTs. IEEE Transactions On Electron Devices, 2016, vol. 63, no. 12, pp. 4693—4701. DOI: 10.1109/TED.2016.2618421

18. Lee J. W., Mackenzie K. D., Johnson D., Sasserath J. N., Pearton S. J., Ren F. Low temperature silicon nitride and silicon dioxide film processing by inductively coupled plasma chemical vapor deposition. J. Electrochem. Soc., 2000, vol. 147, no. 4, pp. 1481—1486. DOI: 10.1149/1.1393382

19. Thomas O. Inductively coupled plasma chemical vapour deposition (ICP-CVD). Oxford Instruments Plasma Technology. 2010. URL: https://plasma.oxinst.com/campaigns/technology/icpcvd (aссessed: 24.07.2020).

20. Cho H.-J., Her J.-C., Lee K., Cha H.-Y., Seo K.-S. Low damage SiNx surface passivation using remote ICP-CVD for AlGaN/GaN HEMTs. Extended Abstracts of the 2008 International Conference on Solid State Devices and Materials. Tsukuba (Japan), 2008, pp. 504—505.

21. Kondakov M. N., Chernykh S. V., Chernykh A. V., Podgorny D. A., Gladysheva N. B., Dorofeev A. A., Didenko S. I., Kaprov D. B., Zhukova T. A. Effect of annealing conditions on electrical properties, surface morphology and microstructure of Mo/Al/Mo/Au ohmic contacts on AlGaN/GaN heterostructures. Electronic Engineering. Series 2. Semiconductor Devices. 2018, no. 2, pp. 40—47. (In Russ.). URL: http://j.pulsarnpp.ru/images/journal/issues/2018/2_249/kondakov.pdf (aссessed: 24.07.2020).

22. Gereth R., Scherber W. Properties of ammonia-free nitrogen - Si3N4 films produced at low temperatures. J. Electrochem. Soc., 1972, vol. 119, no. 9, pp. 1248—1254. DOI: 10.1149/1.2404452

23. Han I. K., Lee Y. J., Jo J. W., Lee J. I., Kang K. N. Growth and characterization of silicon-nitride films by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci., 1991, vol. 48–49, pp. 104—110. DOI: 10.1016/0169-4332(91)90313-9


Review

For citations:


Sleptsova A.A., Chernykh S.V., Podgorny D.A., Zhilnikov I.A. Optimization of passivation in AlGaN/GaN heterostructure microwave transistor fabrication by ICP CVD. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(2):127-133. (In Russ.) https://doi.org/10.17073/1609-3577-2020-2-127-133

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)