Optimization of passivation in AlGaN/GaN heterostructure microwave transistor fabrication by ICP CVD
https://doi.org/10.17073/1609-3577-2020-2-127-133
Abstract
About the Authors
A. A. SleptsovaRussian Federation
4 Leninsky Prospekt, Moscow 119049
Anastasia A. Sleptsova: Postgraduate Student
S. V. Chernykh
Russian Federation
4 Leninsky Prospekt, Moscow 119049;
27 Okruzhnoy Proezd, Moscow 105187
Sergey V. Chernykh: Assistant (1), Head of Laboratory (2)
D. A. Podgorny
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Dmitry A. Podgorny: Cand. Sci. (Phys.-Math.) Associate Professor, Deputy Head of the Department of Materials Science of Semiconductors and Dielectrics
I. A. Zhilnikov
Russian Federation
27 Okruzhnoy Proezd, Moscow 105187
Ilya A. Zhilnikov: Technician
References
1. Arendarenko A. A., Oreshkin V. A., Sveshnikov Yu. N., Tsyplenkov I. N. Trends in the Development of the Epitaxial Nitride Compounds Technology. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 1, pp. 5—15. (In Russ.). DOI: 10.17073/1609-3577-2015-1-5-15
2. Sun H., Liu M., Liu P., Lin X., Cui X., Chen J., Chen D. Performance optimization of lateral AlGaN/GaN HEMTs with cap gate on 150-mm silicon substrate. Solid-State Electronics, 2017, vol. 130, pp. 28—32. DOI: 10.1016/j.sse.2017.01.006
3. Sleptsov E. V., Chernykh A. V., Chernykh S. V., Dorofeev A. A., Gladysheva N. B., Kondakov M. N., Sleptsova A. A., Panichkin A. V., Konovalov M. P., Didenko S. I. Investigation of the thermal annealing effect on electrical properties of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures. J. Phys.: Conf. Series, 2017, vol. 816, p. 012039. DOI: 10.1088/1742-6596/816/1/012039
4. Kaushik J. K., Balakrishnan V. R., Mongia D., Kumar U., Dayal S., Panwar B. S., Muralidharan R. Investigation of surface related leakage current in AlGaN/GaN High Electron Mobility Transistors. Thin Solid Films, 2016, vol. 612, pp. 147—152. DOI: 10.1016/j.tsf.2016.06.003
5. Huang H., Sun Z., Cao Y., Li F., Zhang F., Wen Z., Zhang Z., Liang Y. C., Hu L. Investigation of surface traps-induced current collapse phenomenon in AlGaN/GaN high electron mobility transistors with Schottky gate structures. J. Phys. D: Appl. Phys., 2018, vol. 51, no. 34, p. 345102. DOI: 10.1088/1361-6463/aad455
6. Huang H., Liang Yu. C., Samudra G. S., Chang T.-F., Huang C.-F. Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Transactions On Power Electronics, 2014, vol. 29, no. 5, pp. 2164—2173. DOI: 10.1109/TPEL.2013.2288644
7. Enisherlova K. L., Medvedev B. K., Temper E. M., Korneev V. I. Influence of technological factors on the characteristics of ohmic contacts of powerful AlGaN/GaN/SiC HEMT. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2018, vol. 21, no. 3, pp. 182—193. (In Russ.). DOI: 10.17073/1609-3577-2018-3-182-193
8. Abgaryan K. K. Optimization problems of nanoscale semiconductor heterostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2016, vol. 19, no. 2, pp. 108—114. (In Russ.). DOI: 10.17073/1609-3577-2016-2-108-114
9. Chander S., Gupta S., Ajay, Gupta M. Enhancement of breakdown voltage in AlGaN/GaN HEMT using passivation technique for microwave application. Superlattices and Microstructures, 2018, vol. 120, pp. 217—222. DOI: 10.1016/j.spmi.2018.05.039
10. Zhu G., Liang G., Zhou Y., Chen X., Xu X., Feng X., Song A. Reactive evaporation of SiOx films for passivation of GaN high-electronmobility transistors. J. Phys. Chem. Solids, 2019, vol. 129, pp. 54—60. DOI: 10.1016/j.jpcs.2018.12.021
11. Zhu G., Wang H., Wang Y., Feng X., Song A. Performance enhancement of AlGaN/AlN/GaN high electron mobility transistors by thermally evaporated SiO passivation. Appl. Phys. Lett., 2016, vol. 109, no. 11, p. 113503. DOI: 10.1063/1.4962894
12. Arulkumaran S., Egawa T., Ishikawa H., Jimbo T., Sano Y. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride. Appl. Phys. Lett., 2004, vol. 84, no. 4, pp. 613—615. DOI: 10.1063/1.1642276
13. Kim H.-S., Han S.-W., Jang W.-H., Cho C.-H., Seo K.-S., Oh J., Cha H.-Y. Normally-off GaN-on-Si MISFET using PECVD SiON gate dielectric. IEEE Electron Device Lett., 2017, vol. 38, no. 8, pp. 1090—1093. DOI: 10.1109/LED.2017.2720719
14. Karouta F., Krämer M. C. J. C. M., Kwaspen J. J. M., Grzegorczyk A., Hageman P., Hoex B., Kessels W. M. M., Klootwijk J., Timmering E., Smit M. K. influence of the structural and compositional properties of PECVD silicon nitride layers on the passivation of AlGaN/GaN HEMTs. ECS Transactions, 2008, vol. 16, no. 7, pp. 181—191. DOI: 10.1149/1.2983174
15. Seidman L. A. Formation of three-dimensional structures in silicon carbide substrates by plasmochemistry etching. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 3, pp. 157—171. (In Russ.). DOI: 10.17073/1609-3577-2015-3-157-171
16. Lee J. J. Application of inductively coupled plasma to CVD and PVD. Surface & Coatings Technology, 2005, vol. 200, no. 1–4, pp. 31—34. DOI: 10.1016/j.surfcoat.2005.02.113
17. Dutta G., DasGupta N., DasGupta A. Low-temperature ICP-CVD SiNx as gate dielectric for GaN-based MIS-HEMTs. IEEE Transactions On Electron Devices, 2016, vol. 63, no. 12, pp. 4693—4701. DOI: 10.1109/TED.2016.2618421
18. Lee J. W., Mackenzie K. D., Johnson D., Sasserath J. N., Pearton S. J., Ren F. Low temperature silicon nitride and silicon dioxide film processing by inductively coupled plasma chemical vapor deposition. J. Electrochem. Soc., 2000, vol. 147, no. 4, pp. 1481—1486. DOI: 10.1149/1.1393382
19. Thomas O. Inductively coupled plasma chemical vapour deposition (ICP-CVD). Oxford Instruments Plasma Technology. 2010. URL: https://plasma.oxinst.com/campaigns/technology/icpcvd (aссessed: 24.07.2020).
20. Cho H.-J., Her J.-C., Lee K., Cha H.-Y., Seo K.-S. Low damage SiNx surface passivation using remote ICP-CVD for AlGaN/GaN HEMTs. Extended Abstracts of the 2008 International Conference on Solid State Devices and Materials. Tsukuba (Japan), 2008, pp. 504—505.
21. Kondakov M. N., Chernykh S. V., Chernykh A. V., Podgorny D. A., Gladysheva N. B., Dorofeev A. A., Didenko S. I., Kaprov D. B., Zhukova T. A. Effect of annealing conditions on electrical properties, surface morphology and microstructure of Mo/Al/Mo/Au ohmic contacts on AlGaN/GaN heterostructures. Electronic Engineering. Series 2. Semiconductor Devices. 2018, no. 2, pp. 40—47. (In Russ.). URL: http://j.pulsarnpp.ru/images/journal/issues/2018/2_249/kondakov.pdf (aссessed: 24.07.2020).
22. Gereth R., Scherber W. Properties of ammonia-free nitrogen - Si3N4 films produced at low temperatures. J. Electrochem. Soc., 1972, vol. 119, no. 9, pp. 1248—1254. DOI: 10.1149/1.2404452
23. Han I. K., Lee Y. J., Jo J. W., Lee J. I., Kang K. N. Growth and characterization of silicon-nitride films by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci., 1991, vol. 48–49, pp. 104—110. DOI: 10.1016/0169-4332(91)90313-9
Review
For citations:
Sleptsova A.A., Chernykh S.V., Podgorny D.A., Zhilnikov I.A. Optimization of passivation in AlGaN/GaN heterostructure microwave transistor fabrication by ICP CVD. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(2):127-133. (In Russ.) https://doi.org/10.17073/1609-3577-2020-2-127-133