Study of the influence of treatment on the strength of undoped indium antimonide single-crystal plates
https://doi.org/10.17073/1609-3577-2021-1-48-56
Abstract
The method of plane-transverse bending was used to measure the strength of thin single-crystal plates of undoped InSb with a crystallographic orientation of (100). It was found that the strength of the plates (thickness ≤ 800 μm) depends on their processing. Using a full processing cycle (grinding and chemical polishing) allows to increase the strength of InSb plates by 2 times (from 3.0 to 6.4 kg/mm2). It is shown that the dependence of strength on processing for wafers with (100) orientation is similar to this dependence for wafers (111), while the strength of wafers (111) is 2 times higher. The contact profilometry method was used to measure the roughness of thin plates, which also passed successive processing steps. It was found that during a full cycle of processing, the roughness of InSb plates decreases (Ra from 0.6 to 0.04 μm), leading to a general smoothing of the surface roughness. The strength and roughness of the (100) InSb and GaAs wafers are compared. It was found that the strength of GaAs cut wafers is 2 times higher than the strength of InSb cut wafers and slightly increases after a full cycle of their processing. It was shown that the roughness of GaAs and InSb plates after a full cycle of surface treatment is significantly reduced: 10 times for InSb due to overall surface leveling and 3 times for GaAs (Rz from 2.4 to 0.8 μm) due to a decrease in the peak component. Conducting a full cycle of processing InSb plates can increase their strength by removing broken layers by sequential operations and reducing the risk of mechanical damage.
About the Authors
S. S. KormilitsinaRussian Federation
2 Elektrodnaya Str., Moscow 111524
Svetlana S. Kormilitsina: Trainee Researcher
E. V. Molodtsova
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Elena V. Molodtsova: Cand. Sci. (Eng.), Leading Researcher
S. N. Knyzev
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Stanislav N. Knyzev: Cand. Sci. (Eng.), Head of Laboratory
R. Yu. Kozlov
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Roman Yu. Kozlov: Deputy Head of the Laboratory, Postgraduate Student of NUST MISIS (2nd year, Materials Technology)
D. A. Zavrazhin
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Dmitry A. Zavrazhin: Engineer
E. V. Zharikova
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Elena V. Zharikova: Leading Process Engineer
Yu. V. Syrov
Russian Federation
78 Vernadsky Ave., Moscow 11945
Yuri V. Syrov: Cand. Sci. (Phys.-Math.), Associate Professor, Department of Physics and Chemistry of Materials. B.A. Dogadkin
References
1. Grinchenko L. Ya., Ponomarenko V. P., Filachev A. M. Current state and outlookof Ir photoelectronics development. Prikladnaya fizika, 2009, no. 2, pp. 57—62. (In Russ.)
2. Intel and QinetiQ Collaborate on Transistor Research. URL: http://www.intel.com/pressroom/arihive/releass/2005/20050208corp.htm (accessed: 28.10.2020).
3. Obukhov I., Gorokh G. G., Lozovenko A., Smirnova E. Matrices of indium antimonide nanowires and their applications in microwave generators. Nanoindustry, 2017, vol. 77, no. 6, pp. 96—108. (In Russ.). DOI: 10.22184/1993-8578.2017.77.6.96.108
4. Electronics and Materials Corporation Limited. URL: http://eandmint.co.jp/eng/wafer/product_detail/product_insb.html (accessed: 28.10.2020).
5. Trail: Wafer Technology Ltd. URL: http://www.wafertech. co.uk (accessed: 28.10.2020).
6. MTI Corporation. URL: http://www.mtixtl.com/ (accessed: 28.10.2020).
7. Galaxy Compound Semiconductors, Inc. URL: http://www.galaxywafer.com/ (accessed: 28.10.2020).
8. Xiamen Powerway Advanced Material Co, Ltd. URL: https://www.powerwaywafer.com/compound-semiconductor/insb-wafer.html (accessed: 28.10.2020).
9. Akchurin R. Kh., Marmalyuk A. A. MOS-gidridnaya epitaksiya v tekhnologii materialov fotoniki i elektroniki [MOS hydride epitaxy in photonics and electronics materials technology]. Moscow: Tekhnosfera, 2018. 488 p. (In Russ.)
10. Gorelik S. S., Dashevskii M. Ya. Materialovedenie poluprovodnikov i dielektrikov [Materials science of semiconductors and dielectrics]. Moscow: MISiS, 2003. 480 p. (In Russ.)
11. Ezhlov V. S., Milvidskaya A. G., Molodtsova E. V., Kolchina G. P., Mezhennyi M. V., Resnick V. Y. Investigation on the properties of large [100]-oriented InSb single crystals grown by Czohralski method. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, no. 2, pp. 13—17. (In Russ.). DOI: 10.17073/1609-3577-2012-2-13-17
12. Milvidskii M. G. Poluprovodnikovye materialy v sovremennoi elektronike [Semiconductor materials in modern electronics]. Moscow: Nauka, 1986. 143 p. (In Russ.)
13. Boltar K. O., Vlasov P. V., Eroshenkov V. V., Lopuhin A. A. Research of photodiodes with a leakage current in the InSb FPA. Prikladnaya fizika, 2014, no. 4, pp. 45—50. (In Russ.)
14. Biryukov E. N., Khokhlov A. I., Teplova T. B., Lapshin I. V. Impact of nonuniform fractured surface layer of processed brittle material plates on end product quality. Mining informational and analytical bulletin (scientific and technical journal), 2018, no. 8, pp. 26—35. (In Russ.). DOI: 10.25018/0236-1493-2018-8-0-26-35
15. Zakharov B. G. Issledovanie i razrabotka tekhnologii i sposobov polucheniya podlozhek i ehpitaksial’nykh sloev poluprovodnikovykh materialov s vysokim strukturnym sovershenstvom [Research and development of technology and methods for producing substrates and epitaxial layers of semiconductor materials with high structural perfection]. Diss. … Dr. Sci. (Eng.). Kaluga, 1984. 423 p. (In Russ.)
16. Milvidskii M. G., Osvenskii V. B. Strukturnye defekty v monokristallakh poluprovodnikov [Structural defects in single crystals of semiconductors]. Moscow: Metallurgiya, 1984. 256 p. (In Russ.)
17. Patent 2482228 (RF) Sposob polucheniya krupnogabaritnykh kristallov antimonida indiya InSb [A method of obtaining large crystals of indium antimonide InSb]. V. S. Ezhlov, A. G. Mil’vidskaya, E. V. Molodtsova, G. P. Kolchina, M. V. Mezhennyi, V. Ya. Reznik, 2012.
18. Fost J. Travlenie poluprovodnikov [Semiconductor etching]. Moscow: Mir, 1965, 382 p. (In Russ.)
19. Amelinks S. Metody pryamogo nablyudeniya dislokatsii [Direct observation of dislocations]. Moscow: Mir, 1968. 438 p. (In Russ.)
20. van der Pauw L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep., 1958, vol. 13, pp. 220—224. URL: http://electron.mit.edu/~gsteele/vanderpauw/vanderpauw.pdf
21. Kontsevoi Yu. A., Litvinov Yu. M., Fattakhov Eh. A. Plastichnost’ i prochnost’ poluprovodnikovykh materialov i struktur [Plasticity and strength of semiconductor materials and structures]. Moscow: Radio i svyaz’, 1982. 239 p. (In Russ.)
22. Mal’kov O. V., Litvinenko A. V. Izmerenie parametrov sherokhovatosti poverkhnosti detali [Measurement of the surface roughness parameters of the part]. Moscow: Bauman MSTU, 2012. 22 p. (In Russ.)
23. Khusu A. P., Vitenberg Yu. R., Pal’mov V. A. Sherokhovatost’ poverkhnostei (teoretiko-veroyatnostnyi podkhod) [Surface roughness (probability-theoretical approach)]. Moscow: Nauka, 1975. 344 p. (In Russ.)
24. Nazarov Yu. F., Shkilko A. M., Tikhonenko V. V., Kompaneets I. V. Methods of research and control of surface roughness of metals and alloys. Fizicheskaya inzheneriya poverkhnosti, 2007, vol. 5, no. 3–4, pp. 207—216. (In Russ.)
25. Karban V. I., Borzanov Yu. I. Obrabotka monokristallov v mikroehlektronike [Processing of single crystals in microelectronics]. Moscow: Radio i svyaz’, 1988. 103 p. (In Russ.)
Review
For citations:
Kormilitsina S.S., Molodtsova E.V., Knyzev S.N., Kozlov R.Yu., Zavrazhin D.A., Zharikova E.V., Syrov Yu.V. Study of the influence of treatment on the strength of undoped indium antimonide single-crystal plates. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1):48-56. (In Russ.) https://doi.org/10.17073/1609-3577-2021-1-48-56