Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Материаловедческие вопросы термодинамического моделирования тонкопленочных твердотельных электрокалорических охладителей

https://doi.org/10.17073/1609-3577-2020-1-57-70

Аннотация

Электрокалорическое охлаждение является экологически безопасной технологией преобразования энергии. Электрическое поле, необходимое для возбуждения цикла электрокалорического охлаждения, может быть создано значительно проще и с гораздо меньшими затратами по сравнению с магнитными полями, используемыми для магнетокалорического охлаждения. Кроме того, электрическая мощность, необходимая для электрокалорического охлаждения, может обеспечиваться стационарными или мобильными солнечными батареями, а также аккумуляторами электромобиля. Это открывает совершенно новые возможности для экологически безопасного промышленного прогресса в развивающихся странах. На основе аналитически решаемой модели многослойного электрокалорического охладителя обсуждены свойства материалов, влияющие на эксплуатационные характеристики электрокалорических приборов. Особое внимание уделено объемному термическому сопротивлению и термическому сопротивлению интерфейсов. Даны оценки средней охлаждающей мощности стека микроэлектромеханического электрокалорического охладителя.

Об авторах

Г. Суханек
Дрезденский технический университет
Германия

01062 Дрезден, Германия

Гуннар Суханек — лаборатория твердотельной электроники



Л. Фельсберг
Дрезденский технический университет
Германия

01062 Дрезден, Германия

Линда Фельсберг — лаборатория твердотельной электроники



Г. Герлах
Дрезденский технический университет
Германия

01062 Дрезден, Германия

Геральд Герлах — лаборатория твердотельной электроники



Список литературы

1. Suchaneck G., Pakhomov O., Gerlach G. Electrocaloric cooling // In: Refrigeration. Orhan Ekren (Ed.). Rijeka: Intech, 2017. P. 19—43. DOI: 10.5772/intechopen.68599

2. Suchaneck G., Gerlach G. Electrocaloric cooling based on relaxor ferroelectrics // Phase Transit. 2015. V. 88, N 3. P. 333. DOI: 10.1080/01411594.2014.989225

3. Valant M. Electrocaloric materials for future solid-state refrigeration technologies // Prog. Mater. Sci. 2012. V. 57, N 6. P. 980. DOI: 10.1016/j.pmatsci.2012.02.001

4. Lu S. G., Rožič B., Zhang Q. M., Kutnjak Z., Li Xinyu, Furman E., Gorny L. J., Lin M., Malič B., Kosec M., Blinc R., Pirc R. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect // Appl. Phys. Lett. 2010. V. 97, N 16. P. 162904. DOI: 10.1063/1.3501975

5. Qian Xiao-Shi, Ye Hui-Jian, Zhang Ying-Tang, Gu Haiming, Li Xinyu, Randall C. A., Zhang Q. M. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics // Adv. Funct. Mater. 2014. V. 24, N 9. P. 1300. DOI: 10.1002/adfm.201302386

6. Smith N. A. S., Rokosz M. K., Correia T. M. Experimentally validated finite element model of electrocaloric multilayer ceramic structures // J. Appl. Phys. 2014. V. 116, N 4. P. 044511. DOI: 10.1063/1.4891298

7. Kar-Narayan S., Mathur N. D. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials // Appl. Phys. Lett. 2009. V. 95, N 24. P. 242903. DOI: 10.1063/1.3275013

8. Crossley S., McGinnigle J. R., Kar-Narayan S., Mathur N. D. Finite-element optimisation of electrocaloric multilayer capacitors // Appl. Phys. Lett. 2014. V. 104, N 8. P. 082909. DOI: 10.1063/1.4866256

9. Ju Y. S. Solid-state refrigeration based on the electrocaloric effect for electronics cooling // J. Electron. Packag. 2010. V. 132, N 4. P. 041004. DOI: 10.1115/1.4002896

10. Aprea C., Greco A., Maiorino A., Masselli C. A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model // Int. J. Refrig. 2016. V. 69. P. 369. DOI: 10.1016/j.ijrefrig.2016.06.016

11. Guo D., Gao J., Yu Y.-J., Santhanam S., Slippey A., Fedder G. K., McGaughey A. J. H., Yao S. C. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system // Int. J. Heat Mass Transf. 2014. V. 72. P. 559. DOI: 10.1016/j.ijheatmasstransfer.2014.01.043

12. Feng D., Yao S.-C., Zhang T., Zhang Q. Modeling of a smart heat pump made of laminated thermoelectric and electrocaloric materials // J. Electron. Packag. 2016. V. 138, N 4. P. 041004. DOI: 10.1115/1.4034751

13. Hirasawa S., Kawanami T. Shirai K. Electrocaloric refrigeration using multi-layers of electrocaloric material films and thermal switches // Heat Transfer Eng. 2018. V. 39, N 12. P. 1091—1099. DOI: 10.1080/01457632.2017.1358490

14. Bergmann T. L., Lavine A. S., Incropera F. P., Dewitt D. P. Fundamentals of Heat and Mass Transfer. Hoboken (NJ): John Wiley & Sons, 2011. 1050 p.

15. Ma R., Zhang Z., Tong K., Huber D., Kornbluh R., Ju Y. S., Pei Q. Highly efficient electrocaloric cooling with electrostatic actuation // Science. 2017. V. 357, N 6356. P. 1130. DOI: 10.1126/science.aan5980

16. Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford: Oxford Science Publications, 1959. 510 p.

17. Putley E. H. The pyroelectric detector. In: Semiconducton and Semimetals. Vol. 5. / Eds. R. K. Willardson and A. C. Beer. New York: Academic Press, 1970. P. 259—285.

18. Kubo R. Thermodynamics. An Advanced Course with Problems and Solutions. Amsterdam; New York: North-Holland Pub. Co, 1968. P. 186.

19. Adby P. R. Applied Circuit Theory: Matrix and Computer Methods. London: Ellis Horwood Ltd., 1980.

20. Blevin W. R., Geist J. Influence of black coatings on pyroelectric detectors // Appl. Optics. 1974. V. 13, N 5. P. 1171. DOI: 10.1364/AO.13.001171

21. Zajosz J. Pyroelectric response to step radiation signals in thin ferroelectric films on a substrate // Thin Solid Films. 1979. V. 62, N 2. P. 229. DOI: 10.1016/0040-6090(79)90310-9

22. Samoilov V. B., Yoon Y. S. Frequency response of multilayer pyroelectric sensors // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998. V. 45, N 5. P. 1246. DOI: 10.1109/58.726450

23. Liu S. T., Long D. Pyroelectric detectors and materials // Proc. IEEE. 1978. V. 66, N 1. P. 14. DOI: 10.1109/PROC.1978.10835

24. Ye H.-J., Qian X.-S., Jeong D.-Y., Zhang S., Zhou Y., Shao W.-Z., Zhen L., Zhang Q. M. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film // Appl. Phys. Lett. 2014. V. 105, N 15. P. 152908. DOI: 10.1063/1.4898599

25. Kell R. C., Hellicar N. J. Structural transitions in barium titanate-zirconate transducer materials // Acta Acustica united with Acustica. 1956. V. 6, N 2. P. 235—245.

26. Hennings D., Schnell A., Simon G. Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics // J. Am. Ceram. Soc. 1982. V. 65, N 11. P. 539. DOI: 10.1111/j.1151-2916.1982.tb10778.x

27. Yu Z., Ang C., Guo R., Bhalla A. S. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics // J. Appl. Phys. 2002. V. 92, N 5. P. 2655. DOI: 10.1063/1.1495069

28. KleemannW., Miga S., Dec J., Zhai J. Crossover from ferroelectric to relaxor and cluster glass in BaTi1-xZrxO3 (x = 0.25–0.35) studied by non-linear permittivity // Appl. Phys. Lett. 2013. V. 102, N 23. P. 232907. DOI: 10.1063/1.4811089

29. Lei C., Bokov A. A., Ye Z.-G. Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3—BaSnO3 system // J. Appl. Phys. 2007. V. 101, N 8. P. 084105. DOI: 10.1063/1.2715522

30. Roberts S. Dielectric properties of lead zirconate and barium-lead zirconate // J. Am. Ceram. Soc. 1950. V. 33, N 2. P. 63—66. DOI: 10.1111/j.1151-2916.1950.tb14168.x

31. Guzmán-Verri G. G., Littlewood P. B. Why is the electrocaloric effect so small in ferroelectrics? // APL Mater. 2016. V. 4, N 6. P. 064106. DOI: 10.1063/1.4950788

32. Tang X. G., Chew K.-H., Chan H. L. W., Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics // Acta Materialia. 2004. V. 52, N 17. P. 5177. DOI: 10.1016/j.actamat.2004.07.028

33. Suchaneck G., Gerlach G. The impact of the P-E hysteresis on the performance of electrocaloric cooling // Ferroelectrics. 2017. V. 516, N 1. P. 1. DOI: 10.1080/00150193.2017.1362231

34. Lyeo Ho-Ki, Cahill D. G. Thermal conductance of interfaces between highly dissimilar materials // Phys. Rev. B. 2006. V. 73, N 14. P. 144301. DOI: 10.1103/PhysRevB.73.144301

35. George P. K., Thompson E. D. The Debye temperature of nickel from 0 to 300 K // J. Phys. Chem. Solids. 1967. V. 28, N 12. P. 2539. DOI: 10.1016/0022-3697(67)90040-6

36. Lide D. R. (Ed.). CRC Handbook of Chemistry and Physics. Boca Raton (FL, USA): CRC Press. 2005. 2660 p.

37. Yuan S. P., Jiang P. X. Thermal conductivity of small nickel particles // Int. J. Thermophys., 2006. V. 27, N 2. P. 581. DOI: 10.1007/s10765-005-0003-4

38. Stoner E. C. VI. The specific heat of nickel // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 7. 1936. V. 22, N 145. P. 81—106. DOI: 10.1080/14786443608561668

39. Fujimoto J. G., Liu J. M., Ippen E. P. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures // Phys. Rev. Lett. 1984. V. 53, N 19. P. 1837—1840. DOI: 10.1103/PhysRevLett.53.1837

40. Schoenlein R. W., Lin W. Z., Fujimoto J. G., Eesley G. L. Femtosecond studies of nonequilibrium electronic processes in metals // Phys. Rev. Lett. 1987. V. 58, N 16. P. 1680. DOI: 10.1103/PhysRevLett.58.1680

41. Ishidate T., Sasaki S. Elastic anomaly and phase transition of BaTiO3 // Phys. Rev. Lett. 1989. V. 62, N 1. P. 67—70. DOI: 10.1103/PhysRevLett.62.67

42. He Y. Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics // Thermochimica Acta. 2004. V. 419, N 1–2. P. 135—141. DOI: 10.1016/j.tca.2004.02.008

43. Chase D. R., Lee-Yin C., York R. A. Modeling the capacitive nonlinearity in thin-film BST varactors // IEEE Trans. Microwave Theory Tech. 2005. V. 53, N 10. P. 3215. DOI: 10.1109/TMTT.2005.855141

44. Park W. Y., Hwang C. S. Film-thickness-dependent Curie-Weiss behavior of (Ba,Sr)TiO3 thin-film capacitors having Pt electrodes // Appl. Phys. Lett. 2004. V. 85, N 22. P. 5313. DOI: 10.1063/1.1828583

45. Lee B. T., Hwang C. S. Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba,Sr)TiO3 thin films // Appl. Phys. Lett. 2000. V. 77, N 1. P. 124—126. DOI: 10.1063/1.126897

46. Wang J., Zhang T., Zhang B., Jiang J., Pan R., Ma Z. Interfacial characteristic of (Ba,Sr)TiO3 thin films deposited on different bottom electrodes // J. Mater. Sci.: Mater. Electron. 2009. V. 20, N 12. P. 1208. DOI: 10.1007/s10854-009-9853-z

47. Majumar A., Reddy P. Role of electron–phonon coupling in thermal conductance of metal-nonmetal interfaces // Appl. Phys. Lett. 2004. V. 84, N 23. P. 4768. DOI: 10.1063/1.1758301

48. Mantelli M. B. H., Yovanovich M. M. Thermal Contact Resistance, ch. 16 // In: Spacecraft Thermal Control Handbook. Vol. I: Fundamental Technologies. El Segundo (CA): The Aerospace Press, 2002. 836 p.

49. Иоссель Ю. Я., Качанов Э. С., Струнский М. Г. Расчет электрической емкости. Ленинград: Энергоиздат, 1981. 288 с.

50. Xu J., Fisher T. S. Enhancement of thermal interface materials with carbon nanotube arrays // Int. J. Heat Mass Trans. 2006. P. 49, N 9–10. P. 1658. DOI: 10.1016/j.ijheatmasstransfer.2005.09.039

51. Song W.-B., Sutton M. S., Talghader J. J. Thermal contact conductance of actuated interfaces // Appl. Phys. Lett. 2002. V. 81, N 7. P. 1216. DOI: 10.1063/1.1499518

52. Chen J., Zhang W., Feng Z., Cai W. Determination of thermal contact conductance between thin metal sheets of battery tabs // Int. J. Heat Mass Trans. 2014. V. 69. P. 473. DOI: 10.1016/j.ijheatmasstransfer.2013.10.042

53. Cho J., Richards C., Bahr D., Jiao J., Richards R. Evaluation of contacts for a MEMS thermal switch // J. Micromech. Microeng. 2008. V. 18, N 10. P. 105012. DOI: 10.1088/0960-1317/18/10/105012

54. Jia Y., Ju Y. S. Solid-liquid hybrid thermal interfaces for low-contact pressure thermal switching // J. Heat Transfer. 2014. V. 136, N 7. P. 074503(4p). DOI: 10.1115/1.4027205

55. Cha G., Ju Y. S. Reversible thermal interfaces based on microscale dielectric liquid layers // Appl. Phys. Lett., 2009. V. 94, N 21. P. 211904. DOI: 10.1063/1.3142866

56. Xu Y., Luo X., Chung D. D. L. Sodium silicate based thermal interface material for high thermal contact conductance // J. Electron. Packag. 1999. V. 122, N 2. P. 128. DOI: 10.1115/1.483144

57. Kumar K., Ayyagari N., Fisher T. S. Effects of graphene nanopetal outgrowths on internal thermal interface resistance in composites // ACS Appl. Mater. Interfaces. 2016. V. 8, N 10. P. 6678. DOI: 10.1021/acsami.5b11796

58. Kimling J., Philippi-Kobs A., Jacobsohn J., Oepen H. P., Cahill D. G. Thermal conductance of interfaces with amorphous SiO2 measured by time-resolved magneto-optic Kerr-effect thermometry // Phys. Rev. B. 2017. V. 95, N 18. P. 184305. DOI: 10.1103/PhysRevB.95.184305

59. Zhu J., Tang J. D., Wang W., Liu J., Holub K. W., Yang R. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films // J. Appl. Phys. 2010. V. 108, N 9. P. 094315. DOI: 10.1063/1.3504213

60. Pietrak K., Wiśniewski T. S., Kubiś M. Application of flash method in the measurements of interfacial thermal resistance in layered and particulate composite materials // Thermochimica Acta. 2017. V. 654. P. 54—64. DOI: 10.1016/j.tca.2017.05.007

61. Narumanchi S., Mihalic M., Kelly K., Eesley G. Thermal interface materials for power electronics applications // 11th Intersociety Conf. Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2008). Orlando (FL, USA), 2008. DOI: 10.1109/ITHERM.2008.4544297

62. Khounsary A. M., Chojnowski D., Assoufid L., Worek W. M. Thermal contact resistance across a copper-silicon interface // Proc. SPIE. V. 3151. High heat flux and synchrotron radiation beamlines. San Diego (CA, USA), 1997. P. 45—51. DOI: 10.1117/12.294497

63. Asano M., Ogata J., Yosinaga Y. Quantitative evaluation of contact thermal conductance in a vacuum as a result of simulating the effect of cooling // SPIE Proc. V. 1739. High heat flux engineering. San Diego (CA, USA), 1993. P. 652—656. DOI: 10.1117/12.140520

64. Shah R. K., London A. L. Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978. P. 205.

65. Takács G., Szabó P.G., Bognár Gy. Modelling of the flow-rate dependent partial thermal resistance of integrated microscale cooling structures // Microsyst. Technol. 2017. V. 23, N 9. P. 4001—4010. DOI: 10.1007/s00542-016-2879-2

66. PSF-20cSt Pure Silicone Fluid. URL: http://www.clearcoproducts.com/pdf/low-viscosity/NP-PSF-20cSt.pdf (дата обращения: 28.03.2020).

67. Tools and Basic Information for Design, Engineering and Construction of Technical Applications. URL: http://www.engineeringtoolbox.com (дата обращения: 28.03.2020).

68. Application/Tech Guide – Galden Fluids. URL: http://www.swantek.com/html/products/galden.htm (дата обращения: 28.03.2020).

69. Koehler R., Bruchhaus R., Pitzer D., Primig R., Schreiter M., Wersing W., Winkler B., Gerlach G., Hofmann G., Heß N. Pyroelectric thin film presence detector arrays with micromachined pixels // Integr. Ferroelectrics. 2002. V. 44, N 1. P. 77—90. DOI: 10.1080/10584580215151

70. Zhang X., Grigoropoulos C. P. Thermal conductivity and diffusivity of freestanding silicon nitride thin films // Rev. Sci. Instrum. 1995. V. 66. P. 1115. DOI: 10.1063/1.1145989

71. Information about Dow Corning® brand silicone encapsulants, Dow Corning Corp., 2005. URL: http://bdml.stanford.edu/twiki/pub/Rise/PDMSProceSS/PDMSdatasheet.pdf (дата обращения: 22.03.2020).

72. Suchaneck G., Gerlach G. Materials and device concepts for electrocaloric refrigeration // Phys. Scr. 2015. V. 90, N 9. P. 094020. DOI: 10.1088/0031-8949/90/9/094020


Рецензия

Для цитирования:


Суханек Г., Фельсберг Л., Герлах Г. Материаловедческие вопросы термодинамического моделирования тонкопленочных твердотельных электрокалорических охладителей. Известия высших учебных заведений. Материалы электронной техники. 2020;23(1):57-70. https://doi.org/10.17073/1609-3577-2020-1-57-70

For citation:


Suchaneck G., Felsberg L., Gerlach G. Materials issues in thermal modeling of thin film electrocaloric solid-state refrigerators. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(1):57-70. (In Russ.) https://doi.org/10.17073/1609-3577-2020-1-57-70

Просмотров: 641


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)