Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive
https://doi.org/10.17073/1609-3577-2020-3-196-202
Abstract
About the Authors
I. V. ZaporotskovaRussian Federation
100 Universitetsky Prospekt, Volgograd, 400062
Irina V. Zaporotskova: Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies
D. P. Radchenko
Russian Federation
100 Universitetsky Prospekt, Volgograd, 400062
Daniil P. Radchenko: Postgraduate Student
L. V. Kozitov
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Lev V. Kozitov: Dr. Sci. (Eng.), Research Professor
P. A. Zaporotskov
Russian Federation
100 Universitetsky Prospekt, Volgograd, 400062
Pavel A. Zaporotskov: Cand. Sci. (Phys.-Math.), Associate Professor
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk, Moscow Region, 142103
Alena V. Popkova: Cand. Sci. (Eng.), Senior Researcher
References
1. Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal-carbon nanocomposites and carbon nanocrystal material with perspective properties for developing electronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, no. 3, pp. 59—67. (In Russ.). DOI: 10.17073/1609-3577-2012-3-59-67
2. Muratov D. G., Yakushko E. V., Kozhitov L. V., Popkova A. V., Pushkarev M. A. Formation of nanocomposites Ni/C based of polyacrylonitrile under IR-radiation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2013, no. 1, pp. 61—65. (In Russ.). DOI: 10.17073/1609-3577-2013-1-61-65
3. Zaporotskova I. V., Anikeev N. A., Kozhitov L. V., Popkova A. V. Theoretical investigation of the hydrogenation process in single- and double-layered pyrolized acryl-nitril nanopolymer. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2013, no. 3, pp. 34—38. (In Russ.). DOI: 10.17073/1609-3577-2013-3-34-38
4. Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal carbon nanocomposites and carbon nanocrystalline material with promising properties for the development of electronics. Russ. Microelectron., 2013, vol. 42, no. 8, pp. 498—507. DOI: 10.1134/S1063739713080088
5. Bulatov M. F., Kozitov L. V., Muratov D. G., Karpacheva G. P., Popkova A. V. The magnetic properties of nanocomposites Fe-Co/C based on polyacrylonitrile. J. Nanoelectron. Optoelectron., 2015, vol. 9, no. 6, pp. 828—833. DOI: 10.1166/jno.2014.1682
6. Alonso F., Riente P., Rodríguez-Reinoso F., Ruiz-Martínez J., Sepúlveda-Escribano A., Yus M. A highly reusable carbon-supported platinum catalyst for the hydrogen-transfer reduction of ketones. ChemCatChem, 2009, vol. 1, no. 1, pp. 75—77. DOI: 10.1002/cctc.200900045
7. Ryashentseva M. A., Egorova E. V., Trusov A. I., Nougrnanov E. R., Antonyuk S. N. Application of metal-carbon catalysts in conversions of lower aliphatic alcohols. Russ. Chem. Rev., 2006, vol. 75, no. 11, pp. 1003—1014. DOI: 10.1070/RC2006v075n11ABEH003627
8. Efimov M. N., Zemtsov L. M., Karpacheva G. P., Ermilova M. M., Orekhova N. V., Tereschenko G. F., Dzidziguri E. L., Sidorova E. N. Preparation and structure of catalytic nanocomposite carbon materials containing platinum group metals. Vestnik MITKhT im. M. V. Lomonosova = Fine Chemical Technologies, 2008, vol. 3, no. 1, pp. 68—71. (In Russ.)
9. Lyn'kov L. M., Borbotko T. V., Krishtopova E. A. Radio-absorbing properties of nickel-containing powdered shungite. Pis'ma v ZhTF, 2009, vol. 35, no. 9, pp. 44—48. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/12219
10. Zhou Jianhua, He Jianping, Wang Fao, Li Guoxian, Guo lunxm, Zhao Jianging, Ma Yiou. Design of mesostrucred -Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J. Alloys and Compounds, 2011, vol. 509, no. 32, pp. 8211—8214. DOI: 10.1016/j.jallcom.2011.05.042
11. Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloys and Compounds, 2010, vol. 493, nos. 1–2, pp. 549—552. DOI: 10.1016/j.jallcom.2009.12.153
12. Patent WO9610901A1 (US). Metal filaments for electro-magnetic interference shielding / CHUNG, Deborah, Duen, Ling, 1996.
13. Osnovy fiziki magnitnykh yavlenii v kristallakh [Fundamentals of the physics of magnetic phenomena in crystals]. Kiev: NTUU "KPI", 2004, 227 p. (In Russ.)
14. Vázquez E., Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications. Acs Nano, 2009, vol. 3, no. 12, pp. 3819—3824. DOI: 10.1021/nn901604j
15. Moradi A. Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects. Appl. Opt., 2010, vol. 49, no. 10, pp. 1728—1733. DOI: 10.1364/AO.49.001728
16. Kawabata A., Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn., 1966, vol. 21, no. 9, pp. 1765—1772. DOI: 10.1143/JPSJ.21.1765
17. Hong Zhu, Lan Zhang, Lizi Zhang, Yuan Song, Yi Huang, Yongming Zhang. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing. Materials Lett., 2010, vol. 64, no. 3, pp. 227—230. DOI: 10.1016/j.matlet.2009.07.023
18. Anufrieva S. I., Ozhigina E. G., Rogozhin A. A. Mineralogical and technical features of shungite raw materials, determining the choice of effective directions for creating new materials. Materialy Vserossiiskogo mineralogicheskogo seminara s mezhdunarodnym uchastiem "Geomaterialy dlya vysokikh tekhnologii, almazy, blagorodnye metally, samotsvety Timano-Severoural'skogo regiona" = Materials of the All-Russian Mineralogical Seminar with International Participation "Geomaterials for High Technologies, Diamonds, Precious Metals, Gems of the Timan-North Ural Region". Syktyvkar: Geoprint, 2010, pp. 31—32. (In Russ.)
19. Buseck P. R. Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 2002, vol. 203, nos. 3–4, pp. 781—792. DOI: 10.1016/S0012-821X(02)00819-1
20. Mossman D., Eigendorf G., Tokaryk D., Gauthier-Lafaye F., Guckert K. D., Melezhik V., Farrow C. E. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology, 2003, vol. 31, no. 3, pp. 255—258. DOI: 10.1130/0091-7613(2003)031<0255:TFFIGM>2.0.CO;2
21. Tretyakov Yu. D., Goodilin E. A. Key trends in basic and application-oriented research on nanomaterials. Russ. Chem. Rev., 2009, vol. 78, no. 9, pp. 801—820. DOI: 10.1070/RC2009v078n09ABEH004029
22. Bahl O. P., Manocha L. M. Characterization of oxidized PAN fibers. Carbon, 1974, vol. 12, no. 4, pp. 417—423. DOI: 10.1016/0008-6223(74)90007-4
23. Zaporotskova I. V., Anikeev N. A., Kojitov L. V., Davletova O. A., Popkova A. V. Theoretical studies of the structure of the metal-carbon composites on the base of acryle-nitrile nanopolimer. J. Nano- Electron. Phys., 2014, vol. 6, no. 3, pp. 03035 (3pp.). URI http://essuir.sumdu.edu.ua/handle/123456789/36281
24. Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 2003, vol. 41, no. 14, pp. 2805—2812. DOI: 10.1016/S0008-6223(03)00391-9
25. Sanchez-Soto P. J., Aviles M. A., del Rio J. C., Gines J. M., Pascual J., Perez- Rodriguez J. L. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J. Anal. Appl. Pyrolysis, 2001, vols. 58–59, pp. 155—172. DOI: 10.1016/S0165-2370(00)00203-5
26. Zaporotskova I. V. Pirolizovannyi poliakrilonitril i nekotorye kompozity na ego osnove: osobennosti polucheniya, struktury i svoistv [Pyrolyzed polyacrylonitrile and some composites on its basis: peculiarities of preparation, structure and properties]. Volgograd: Izdatel'stvo Volgogradskogo gosudarstvennogo universiteta, 2016, 220 p. (In Russ.)
27. Muratov D. G., Kozhitov L. V., Zaporotskova I. V., Son'kin V. S., Boroznina N. P., Podkova A. V., Boroznin S. V., Shadrinov A. V. Sintez i svoistva nanochastits, splavov i kompozitsionnykh nanomaterialov na osnove perekhodnykh metallov [Synthesis and properties of nanoparticles, alloys and composite nanomaterials based on transition metals]. Volgograd: Izdatel'stvo Volgogradskogo gosudarstvennogo universiteta, 2017, 650 p. (In Russ.)
28. Zaporotskova I. V., Kozhitov L. V., Anikeev N. A., Davletova O. A., Popkova A. V., Muratov D. G., Yakushko E. V. Metalcarbon nanocomposites based on pyrolysed polyacrylonitrile. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2014, no. 2, pp. 134—142. (In Russ.). DOI: 10.17073/1609-3577-2014-2-134-142
29. Matrenin S. V., Ovechkin B. B. Nanostrukturnye materialy v mashinostroenii [Nanostructural materials in mechanical engineering]. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta, 2009, 186 p. (In Russ.)
30. Basis Sets. URL: http://gaussian.com/basissets/ (accessed: 23.09.2020).
31. Radchenko D. P., Zaporotskova I. V., Kozitov L. V., Boroznina N. P. Theoretical study of the structure and electronic energy structure of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu-Co, Cu-Ni, Ni-Co, Fe-Ni. Sbornik trudov po materialam VI Mezhdunarodnoi konferentsii i molodezhnoi shkoly "Informatsionnye tekhnologii i nanotekhnologii (ITNT-2020)" = Collection of works based on the materials of the VI International Conference and Youth School "Information Technology and Nanotechnology (ITNT-2020)". In 4 vol. Samara: Izdatel'stvo Samarskogo universiteta, 2020, vol. 3, pp. 559—564. (In Russ.)
32. Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys., 1971, vol. 54, no. 2, p. 724. DOI: 10.1063/1.1674902
33. Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. 6-31G* basis set for third-row atoms. J. Comp. Chem., 2001, vol. 22, no. 9, pp. 976—984. DOI: 10.1002/jcc.1058
34. Ackerbauer S., Krendelsberger N., Weitzer F., Hiebl K., Schuster J. C. The constitution of the ternary system Fe–Ni–Si. Intermetallics, 2009, vol. 17, no. 6, pp. 414—420. DOI: 10.1016/j.intermet.2008.11.016
35. Cioslowski J. A new population analysis based on atomic polar tensors. J. Am. Chem. Soc., 1989, vol. 111, no. 22, pp. 8333—8336. DOI: 10.1021/ja00204a001
Review
For citations:
Zaporotskova I.V., Radchenko D.P., Kozitov L.V., Zaporotskov P.A., Popkova A.V. Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(3):196-202. (In Russ.) https://doi.org/10.17073/1609-3577-2020-3-196-202