Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive

https://doi.org/10.17073/1609-3577-2020-3-196-202

Abstract

An urgent problem of radio engineering and radioelectronics nowadays is the synthesis of composite materials with preset parameters that can be used as electronics engineering materials. Of special interest are MW range wide-band electromagnetic radiation absorbers. Special attention is paid to materials on the basis of ferromagnetic metals that are capable of effectively absorbing and reflecting incident waves and having a clear nanostructure. Development of nanocapsulated metals will allow controlling the parameters of newly designed materials. This is achieved with the use of polymer matrices, e.g. pyrolyzed polyacrylonitrile (PPAN). This work is a theoretical study of a PPAN monolayer model containing pairs of transition metal atoms iron, nickel and cobalt which possess ferromagnetic properties, in Fe–Co, Ni–Co and Fe–Ni combinations, with silicon amorphizing admixture. We studied the geometrical structure of the metal composite systems which are modeled as PPAN molecular clusters the centers of which are voided of six matrix material atoms, the resultant defects (the so-called pores) being filled with pairs of the metal atoms being studied. The metal containing monolayer proved to be distorted in comparison with the initially planar PPAN monolayer. We plotted single-electron spectra of the composite nanosystems and characterized their band gaps. The presence of metal atoms reduces the band gap of a metal composite as compared with pure PPAN. We determined the charges of the metals and found electron density transfer from metal atoms to their adjacent PPAN monolayer atoms. We calculated the average bond energy of the test metal composite systems and proved them to be stable. The studies involved the use of the density functional theory (DFT) method with the B3LYP functional and the 6-31G(d) basis.

About the Authors

I. V. Zaporotskova
Volgograd State University
Russian Federation

100 Universitetsky Prospekt, Volgograd, 400062

Irina V. Zaporotskova: Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies



D. P. Radchenko
Volgograd State University
Russian Federation

100 Universitetsky Prospekt, Volgograd, 400062

Daniil P. Radchenko: Postgraduate Student



L. V. Kozitov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Lev V. Kozitov: Dr. Sci. (Eng.), Research Professor



P. A. Zaporotskov
Volgograd State University
Russian Federation

100 Universitetsky Prospekt, Volgograd, 400062

Pavel A. Zaporotskov: Cand. Sci. (Phys.-Math.), Associate Professor



A. V. Popkova
FGUP «NII NPO “LUCH”»
Russian Federation

24 Zheleznodorozhnaya Str., Podolsk, Moscow Region, 142103

Alena V. Popkova: Cand. Sci. (Eng.), Senior Researcher



References

1. Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal-carbon nanocomposites and carbon nanocrystal material with perspective properties for developing electronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, no. 3, pp. 59—67. (In Russ.). DOI: 10.17073/1609-3577-2012-3-59-67

2. Muratov D. G., Yakushko E. V., Kozhitov L. V., Popkova A. V., Pushkarev M. A. Formation of nanocomposites Ni/C based of polyacrylonitrile under IR-radiation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2013, no. 1, pp. 61—65. (In Russ.). DOI: 10.17073/1609-3577-2013-1-61-65

3. Zaporotskova I. V., Anikeev N. A., Kozhitov L. V., Popkova A. V. Theoretical investigation of the hydrogenation process in single- and double-layered pyrolized acryl-nitril nanopolymer. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2013, no. 3, pp. 34—38. (In Russ.). DOI: 10.17073/1609-3577-2013-3-34-38

4. Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal carbon nanocomposites and carbon nanocrystalline material with promising properties for the development of electronics. Russ. Microelectron., 2013, vol. 42, no. 8, pp. 498—507. DOI: 10.1134/S1063739713080088

5. Bulatov M. F., Kozitov L. V., Muratov D. G., Karpacheva G. P., Popkova A. V. The magnetic properties of nanocomposites Fe-Co/C based on polyacrylonitrile. J. Nanoelectron. Optoelectron., 2015, vol. 9, no. 6, pp. 828—833. DOI: 10.1166/jno.2014.1682

6. Alonso F., Riente P., Rodríguez-Reinoso F., Ruiz-Martínez J., Sepúlveda-Escribano A., Yus M. A highly reusable carbon-supported platinum catalyst for the hydrogen-transfer reduction of ketones. ChemCatChem, 2009, vol. 1, no. 1, pp. 75—77. DOI: 10.1002/cctc.200900045

7. Ryashentseva M. A., Egorova E. V., Trusov A. I., Nougrnanov E. R., Antonyuk S. N. Application of metal-carbon catalysts in conversions of lower aliphatic alcohols. Russ. Chem. Rev., 2006, vol. 75, no. 11, pp. 1003—1014. DOI: 10.1070/RC2006v075n11ABEH003627

8. Efimov M. N., Zemtsov L. M., Karpacheva G. P., Ermilova M. M., Orekhova N. V., Tereschenko G. F., Dzidziguri E. L., Sidorova E. N. Preparation and structure of catalytic nanocomposite carbon materials containing platinum group metals. Vestnik MITKhT im. M. V. Lomonosova = Fine Chemical Technologies, 2008, vol. 3, no. 1, pp. 68—71. (In Russ.)

9. Lyn'kov L. M., Borbotko T. V., Krishtopova E. A. Radio-absorbing properties of nickel-containing powdered shungite. Pis'ma v ZhTF, 2009, vol. 35, no. 9, pp. 44—48. (In Russ.). URL: https://journals.ioffe.ru/articles/viewPDF/12219

10. Zhou Jianhua, He Jianping, Wang Fao, Li Guoxian, Guo lunxm, Zhao Jianging, Ma Yiou. Design of mesostrucred -Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J. Alloys and Compounds, 2011, vol. 509, no. 32, pp. 8211—8214. DOI: 10.1016/j.jallcom.2011.05.042

11. Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloys and Compounds, 2010, vol. 493, nos. 1–2, pp. 549—552. DOI: 10.1016/j.jallcom.2009.12.153

12. Patent WO9610901A1 (US). Metal filaments for electro-magnetic interference shielding / CHUNG, Deborah, Duen, Ling, 1996.

13. Osnovy fiziki magnitnykh yavlenii v kristallakh [Fundamentals of the physics of magnetic phenomena in crystals]. Kiev: NTUU "KPI", 2004, 227 p. (In Russ.)

14. Vázquez E., Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications. Acs Nano, 2009, vol. 3, no. 12, pp. 3819—3824. DOI: 10.1021/nn901604j

15. Moradi A. Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects. Appl. Opt., 2010, vol. 49, no. 10, pp. 1728—1733. DOI: 10.1364/AO.49.001728

16. Kawabata A., Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn., 1966, vol. 21, no. 9, pp. 1765—1772. DOI: 10.1143/JPSJ.21.1765

17. Hong Zhu, Lan Zhang, Lizi Zhang, Yuan Song, Yi Huang, Yongming Zhang. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing. Materials Lett., 2010, vol. 64, no. 3, pp. 227—230. DOI: 10.1016/j.matlet.2009.07.023

18. Anufrieva S. I., Ozhigina E. G., Rogozhin A. A. Mineralogical and technical features of shungite raw materials, determining the choice of effective directions for creating new materials. Materialy Vserossiiskogo mineralogicheskogo seminara s mezhdunarodnym uchastiem "Geomaterialy dlya vysokikh tekhnologii, almazy, blagorodnye metally, samotsvety Timano-Severoural'skogo regiona" = Materials of the All-Russian Mineralogical Seminar with International Participation "Geomaterials for High Technologies, Diamonds, Precious Metals, Gems of the Timan-North Ural Region". Syktyvkar: Geoprint, 2010, pp. 31—32. (In Russ.)

19. Buseck P. R. Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 2002, vol. 203, nos. 3–4, pp. 781—792. DOI: 10.1016/S0012-821X(02)00819-1

20. Mossman D., Eigendorf G., Tokaryk D., Gauthier-Lafaye F., Guckert K. D., Melezhik V., Farrow C. E. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology, 2003, vol. 31, no. 3, pp. 255—258. DOI: 10.1130/0091-7613(2003)031<0255:TFFIGM>2.0.CO;2

21. Tretyakov Yu. D., Goodilin E. A. Key trends in basic and application-oriented research on nanomaterials. Russ. Chem. Rev., 2009, vol. 78, no. 9, pp. 801—820. DOI: 10.1070/RC2009v078n09ABEH004029

22. Bahl O. P., Manocha L. M. Characterization of oxidized PAN fibers. Carbon, 1974, vol. 12, no. 4, pp. 417—423. DOI: 10.1016/0008-6223(74)90007-4

23. Zaporotskova I. V., Anikeev N. A., Kojitov L. V., Davletova O. A., Popkova A. V. Theoretical studies of the structure of the metal-carbon composites on the base of acryle-nitrile nanopolimer. J. Nano- Electron. Phys., 2014, vol. 6, no. 3, pp. 03035 (3pp.). URI http://essuir.sumdu.edu.ua/handle/123456789/36281

24. Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 2003, vol. 41, no. 14, pp. 2805—2812. DOI: 10.1016/S0008-6223(03)00391-9

25. Sanchez-Soto P. J., Aviles M. A., del Rio J. C., Gines J. M., Pascual J., Perez- Rodriguez J. L. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J. Anal. Appl. Pyrolysis, 2001, vols. 58–59, pp. 155—172. DOI: 10.1016/S0165-2370(00)00203-5

26. Zaporotskova I. V. Pirolizovannyi poliakrilonitril i nekotorye kompozity na ego osnove: osobennosti polucheniya, struktury i svoistv [Pyrolyzed polyacrylonitrile and some composites on its basis: peculiarities of preparation, structure and properties]. Volgograd: Izdatel'stvo Volgogradskogo gosudarstvennogo universiteta, 2016, 220 p. (In Russ.)

27. Muratov D. G., Kozhitov L. V., Zaporotskova I. V., Son'kin V. S., Boroznina N. P., Podkova A. V., Boroznin S. V., Shadrinov A. V. Sintez i svoistva nanochastits, splavov i kompozitsionnykh nanomaterialov na osnove perekhodnykh metallov [Synthesis and properties of nanoparticles, alloys and composite nanomaterials based on transition metals]. Volgograd: Izdatel'stvo Volgogradskogo gosudarstvennogo universiteta, 2017, 650 p. (In Russ.)

28. Zaporotskova I. V., Kozhitov L. V., Anikeev N. A., Davletova O. A., Popkova A. V., Muratov D. G., Yakushko E. V. Metalcarbon nanocomposites based on pyrolysed polyacrylonitrile. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2014, no. 2, pp. 134—142. (In Russ.). DOI: 10.17073/1609-3577-2014-2-134-142

29. Matrenin S. V., Ovechkin B. B. Nanostrukturnye materialy v mashinostroenii [Nanostructural materials in mechanical engineering]. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta, 2009, 186 p. (In Russ.)

30. Basis Sets. URL: http://gaussian.com/basissets/ (accessed: 23.09.2020).

31. Radchenko D. P., Zaporotskova I. V., Kozitov L. V., Boroznina N. P. Theoretical study of the structure and electronic energy structure of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu-Co, Cu-Ni, Ni-Co, Fe-Ni. Sbornik trudov po materialam VI Mezhdunarodnoi konferentsii i molodezhnoi shkoly "Informatsionnye tekhnologii i nanotekhnologii (ITNT-2020)" = Collection of works based on the materials of the VI International Conference and Youth School "Information Technology and Nanotechnology (ITNT-2020)". In 4 vol. Samara: Izdatel'stvo Samarskogo universiteta, 2020, vol. 3, pp. 559—564. (In Russ.)

32. Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys., 1971, vol. 54, no. 2, p. 724. DOI: 10.1063/1.1674902

33. Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. 6-31G* basis set for third-row atoms. J. Comp. Chem., 2001, vol. 22, no. 9, pp. 976—984. DOI: 10.1002/jcc.1058

34. Ackerbauer S., Krendelsberger N., Weitzer F., Hiebl K., Schuster J. C. The constitution of the ternary system Fe–Ni–Si. Intermetallics, 2009, vol. 17, no. 6, pp. 414—420. DOI: 10.1016/j.intermet.2008.11.016

35. Cioslowski J. A new population analysis based on atomic polar tensors. J. Am. Chem. Soc., 1989, vol. 111, no. 22, pp. 8333—8336. DOI: 10.1021/ja00204a001


Review

For citations:


Zaporotskova I.V., Radchenko D.P., Kozitov L.V., Zaporotskov P.A., Popkova A.V. Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(3):196-202. (In Russ.) https://doi.org/10.17073/1609-3577-2020-3-196-202

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)