Mathematical modeling of a self-learning neuromorphic network based on nanosized memristive elements with 1T1R crossbar architecture
https://doi.org/10.17073/1609-3577-2020-3-186-195
Abstract
Artificial neural networks play an important role in the modern world. Their main field of application is the tasks of recognition and processing of images, speech, as well as robotics and unmanned systems. The use of neural networks is associated with high computational costs. In part, it was this fact that held back their progress, and only with the advent of high-performance computing systems did the active development of this area begin. Nevertheless, the issue of speeding up the work of neural network algorithms is still relevant. One of the promising directions is the creation of analog implementations of artificial neural networks, since analog calculations are performed orders of magnitude faster than digital ones. The memristor acts as the basic element on which such systems are built. A memristor is a resistance, the conductivity of which depends on the total charge passed through it. Combining them into a matrix (crossbar) allows one layer of artificial synapses to be implemented at the hardware level. Traditionally, the STDP method based on Hebb’s rule has been used as an analog learning method. In this work, we are modeling a two-layer fully connected network with one layer of synapses. The memristive effect can manifest itself in different substances (mainly in different oxides), so it is important to understand how the characteristics of memristors will affect the parameters of the neural network. Two oxides are considered: titanium oxide (TiO2) and hafnium oxide (HfO2). For each oxide, a parametric identification of the corresponding mathematical model is performed to best fit the experimental data. The neural network is tuned depending on the oxide used and the process of training it to recognize five patterns is simulated.
Keywords
About the Authors
A. Yu. MorozovRussian Federation
44 Vavilov Str., Moscow 119333;
4 Volokolamskoe shosse, 4, Moscow 125993
Alexander Yu. Morozov: Cand. Sci. (Phys.-Math.), Researcher
K. K. Abgaryan
Russian Federation
44 Vavilov Str., Moscow 119333;
4 Volokolamskoe shosse, 4, Moscow 125993
Karine K. Abgaryan: Dr. Sci. (Phys.-Math.), Associate Professor, Head of Department
D. L. Reviznikov
Russian Federation
44 Vavilov Str., Moscow 119333;
4 Volokolamskoe shosse, 4, Moscow 125993
Dmitry L. Reviznikov: Dr. Sci. (Phys.-Math.), Professor
References
1. Wong H.-S. P., Lee H. Y., Yu S., Chen Y. S., Wu Y., Chen P. S., Lee B., Frederic T. Metal-oxide RRAM. Proceedings of the IEEE, 2012. vol. 100, no. 6, pp. 1951—1970. DOI: 10.1109/JPROC.2012.2190369
2. Yang J. J., Strukov D. B., Stewart D. R. Memristive devices for computing. Nature Nanotechnology, 2013, vol. 8, no. 1, pp. 13—24. DOI: 10.1038/nnano.2012.240
3. Li C., Hu M., Li Y., Jiang H., Ge N., Montgomery E., Zhang J., Song W., Dávila N., Graves C. E., Li Z., Strachan J. P., Lin P., Wang Z., Barnell M., Wu Q., Williams R. S., Yang J. J., Xia Q. Analogue signal and image processing with large memristor crossbars. Nature Electronics, 2018, vol. 1, no. 1, pp. 52—59. DOI:10.1038/s41928-017-0002-z
4. Hu M., Graves C. E., Li C., Li Y., Ge N., Montgomery E., Davila N., Jiang H., Williams R. S., Yang J. J., Xia O., Strachan J. P. Memristor-based analog computation and neural network classification with a dot product engine. Advanced Materials, 2018, vol. 30, no. 9, pp. 1705914. DOI: 10.1002/adma.201705914
5. Morozov A. Yu., Reviznikov D. L., Abgaryan K. K. Issuues of implementing neural network algorithms on memristor crossbars. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2019, vol. 22, no. 4, pp. 272—278. DOI: 10.17073/1609-3577-2019-4-272-278
6. Diehl P., Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 2015. vol. 9, pp. 99. DOI: 10.3389/fncom.2015.00099
7. Ambrogio S., Milo V., Wang Z.-Q., Ramaswamy N., Balatty S., Carboni R., Calderoni A., Lelmibi D. Neuromorphic learning and recognition with one-transistor-one-resistor synapses and bistable metal oxide RRAM. IEEE Transactions on Electron Devices, 2016, vol. 63, no. 4, pp. 1508–1515. DOI: 10.1109/TED.2016.2526647
8. Guo Y., Wu H., Gao B., Qian H. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks. Frontiers in Neuroscience, 2019, vol. 13, p. 812. DOI: 10.3389/fnins.2019.00812
9. Milo V. Laudato M., Ambrosi E., Chicca E., Pedretti G., Bricalli A., Bianchi S., Ielmini D. Resistive switching synapses for unsupervised learning in feed-forward and recurrent neural networks. International Symposium on Circuits and Systems. Florence (Italy): IEEE, 2018, pp. 1—5. DOI: 10.1109/ISCAS.2018.8351824
10. Pedretti G., Bianchi S., Milo V., Calderoni A., Ramaswamy N., Ielmini D. Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses. International Electron Devices Meeting, San Francisco (CA, USA): IEEE, 2017, pp. 28.1.1—28.1.4. DOI: 10.1109/IEDM.2017.8268467
11. Milo V., Ielmini D., Chicca E. Attractor networks and associative memories with STDP learning in RRAM synapses. International Electron Devices Meeting, San Francisco (CA, USA): IEEE, 2017, pp. 11.2.1—11.2.4. DOI: 10.1109/IEDM.2017.8268369
12. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature. 2008, vol. 453, no. 7191, pp. 80. DOI: 10.1038/nature06932
13. Yang J. J., Pickett M. D., Xuema L., Ohlberg D. A. A., Stewart D. R., Williams R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology, 2008, vol. 3, no. 7, pp. 429—433. DOI: 10.1038/nnano.2008.160
14. Pickett M. D., Stukov D. B., Borghetti J. L., Yang J. J., Snider G. S., Stewart D. R., Williams R. S. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys., 2009, vol. 106, no. 7, pp. 074508. DOI: 10.1063/1.3236506
15. Joglekar Y. N., Wolf S. J. The elusive memristor: properties of basic electrical circuits. European J. Physics, 2009, vol. 30, no. 4, pp. 661. DOI: 10.1088/0143-0807/30/4/001
16. Biolek Z., Biolek D., Biolkova V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, pp. 210—214. URL: https://www.radioeng.cz/fulltexts/2009/09_02_210_214.pdf
17. Prodromakis T., Peh B. P., Papavassiliou C., Toumazou C. A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 2011. vol. 58, no. 9, pp. 3099—3105. DOI: 10.1109/TED.2011.2158004
18. Zha J., Huang H., Liu Y. A novel window function for memristor model with application in programming analog circuits. IEEE Transactions on Circuits and Systems II: Express Briefs. 2015. vol. 63, no. 5, pp. 423—427. DOI: 10.1109/TCSII.2015.2505959
19. Kvatinsky S., Friedman E. G., Kolodny A., Weiser U. C. TEAM: ThrEshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 1, pp. 211—221. DOI: 10.1109/TCSI.2012.2215714
20. Kvatinsky S., Ramadan M., Friedman E. G., Kolodny A. VTEAM: A general model for voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, vol. 62, no. 8, pp. 786—790. DOI: 10.1109/TCSII.2015.2433536
21. Yakopcic C., Taha T. M., Subramanyam G., Pino R. E., Rogers S. A memristor device model. IEEE Electron Device Letters, 2011, vol. 32, no. 10, pp. 1436—1438. DOI: 10.1109/LED.2011.2163292
22. Zheng G., Mohanty S. P., Kougianos E., Okobiah O. Polynomial metamodel integrated Verilog-AMS for memristor-based mixed-signal system design. International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus (OH, USA): IEEE, 2013, pp. 916—919. DOI: 10.1109/MWSCAS.2013.6674799
23. Mladenov V. Analysis of memory matrices with HfO2 memristors in a PSpice environment. Electronics, 2019, vol. 8, no. 4, p. 383. DOI: 10.3390/electronics8040383
24. Teplov G. S., Gornev E. S. Multilevel bipolar memristor model considering deviations of switching parameters in the Verilog-A language. Russian Microelectronics, 2019. vol. 48, no. 3, pp. 131—142. DOI: 10.1134/S1063739719030107
25. Morozov A. Y., Reviznikov D. L. Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions. Differential Equations, 2018, vol. 54, no. 7, pp. 945—956. DOI: 10.1134/S0012266118070121
26. Morozov A. Yu., Reviznikov D. L., Gidaspov V. Yu. Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters. Mathematical Models and Computer Simulations, 2019, vol. 11, no. 4, pp. 622—633. DOI: 10.1134/S2070048219040100
27. Morozov A. Y., Abgaryan K. K., Reviznikov D. L. Mathematical model of a neuromorphic network based on memristive elements. Chaos, Solitons & Fractals, 2021, vol. 143, p. 110548. DOI: 10.1016/j.chaos.2020.110548
Review
For citations:
Morozov A.Yu., Abgaryan K.K., Reviznikov D.L. Mathematical modeling of a self-learning neuromorphic network based on nanosized memristive elements with 1T1R crossbar architecture. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(3):186-195. (In Russ.) https://doi.org/10.17073/1609-3577-2020-3-186-195