Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles

https://doi.org/10.17073/1609-3577-2018-4-207-215

Abstract

In this work, the influence of zirconium substitution in cubic spinel nanocrystalline CoFe2O4 on the structural, morphological and dielectric properties are reported. Zirconium substituted cobalt ferrite Co1-xZrxFe2O4 (x = 0.7) nanoparticles were synthesized by sol-gel route. The structural and morphological investigations using powder X-ray diffraction and high resolution scanning electron microscope (HRSEM) analysis are reported. Scherrer plot, Williamson–Hall analysis and Size-strain plot method were used to calculate the crystallite size and lattice strain of the samples. High purity chemical composition of the sample was confirmed by energy dispersive X-ray analysis. The atoms vibration modes of as synthesized nanoparticles were recorded using Fourier transform infrared (FTIR) spectrometer in the range of 4000–400 cm-1. The temperature-dependent dielectric properties of zirconium substituted cobalt ferrite nanoparticles were also carried out. Relative dielectric permittivity, loss tangent and AC conductivity were measured in the frequency range 50 Hz to 5 MHz at temperatures between 323 and 473 K. The dielectric constant and dielectric loss values of the sample decreased with increasing in the frequency of the applied signal.

About the Authors

S. Anand
Department of Physics, Loyola College
India


A. P. Amaliya
Department of Physics, Loyola College
India


M. Asisi
Department of Physics, Loyola College
India


J. S. Pauline
Department of Physics, Loyola College
India


References

1. Sharifi I., Shokrollahi H., Mahdi Doroodmand M., Safi R. Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater., 2012, vol. 324, no. 10, pp. 1854—1861. DOI: 10.1016/j.jmmm.2012.01.015

2. Paulsen J. A., Ring A. P., Lo C. C. H., Snyder J. E., Jiles D. C. Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications. J. Appl. Phys., 2005, vol. 97, no. 4, p. 044502. DOI: 10.1063/1.1839633

3. Rus S. F., Vlazan P., Herklotz A. Synthesis and characterization of Zirconium substituted Cobalt Ferrite nanopowders. J. Nanosci. Nanotechnol., 2016, vol. 16, no. 1, pp. 851—855. DOI: 10.1166/jnn.2016.11775

4. Pallai V., Shah D. O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater., 1996, vol. 163, no. 1–2, pp. 243—248. DOI: 10.1016/S0304-8853(96)00280-6

5. Skomski R. Nanomagnetics. J. Phys.: Condens. Matter., 2003, vol. 15, no. 20, p. R841. DOI: 10.1088/0953-8984/15/20/202

6. Bappi Paul, Debraj Dhar Purkayastha, Siddhartha Sankar Dhar. One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid. Mater. Chem. Phys., 2016, vol. 181, pp. 99—105. DOI: 10.1016/j.matchemphys.2016.06.039

7. Ayyappan S., Mahadevan S., Chandramohan P., Srinivasan M. P., Philip John, Raj Baldev. Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C, 2010, vol. 114, no. 14, pp. 6334—6341. DOI: 10.1021/jp911966p

8. Shirsath S. E., Mane M. L., Yasukawa Y., Liu X., Morisako A. Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: influence@pH. J. Nanopart. Res., 2013, vol. 15, pp. 1976—1988. DOI: 10.1007/s11051-013-1976-8

9. Rashad M. M., Mohamed R. M., El-Shall H. Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. J. Mater. Process. Technol., 2008, vol. 198, no. 1–3, pp. 139—146. DOI: 10.1016/j.jmatprotec.2007.07.012

10. Herrera A. P., Polo-Corrales L., Chavez E., Cabarcas-Bolivar J., Uwakweh O. N. C., Rinaldi C. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. J. Magn. Magn. Mater., 2013, vol. 328, pp. 41—52. DOI: 10.1016/j.jmmm.2012.09.069

11. Zhigang Jia, Daping Ren, Qiuze Wang, Lixin Xu, Rongsun Zhu. Structural and magnetic properties of Co1-xZnxFe2O4 nanorods prepared by the solvothermal annealing method. Ceramics International, 2013, vol. 39, no. 6, pp. 6113—6118. DOI: 10.1016/j.ceramint.2013.01.029

12. Srivastava M., Chaubey S., Animesh K. O. Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys., 2009, vol. 118, no. 1, pp. 174—180. DOI: 10.1016/j.matchemphys.2009.07.023

13. Madani S. S., Mahmoudzadeh G., Khorrami S. A. Influence of pH on the characteristics of cobalt ferrite powder prepared by a combination of sol-gel auto-combustion and ultrasonic irradiation techniques. J. Ceram. Process. Res., 2012, vol. 13, no. 2, pp. 123—126.

14. Gyergyek S., Makovec D., Kodre A., Arčon I., Jagodič M., Drofenik M. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. J. Nanopart. Res., 2010, vol. 12, no. 4, pp. 1263—1273. DOI: 10.1007/s11051-009-9833-5

15. Reddy M. V., Das D. Influence of Zr doping on the structural, magnetic and magnetoelastic properties of cobalt-ferrites. J. Alloy. Compd., 2015, vol. 634, pp. 99—103. DOI: 10.1016/j.jallcom.2015.02.084

16. Jinhui Tong, Qingqing Jiang, Zhenpan Chen, Zongxuan Jiang, Can Li. Two-step thermochemical cycles for CO2 splitting on Zr-doped cobalt ferrite supported on silica. Solar Energy, 2015, vol. 116, pp. 133—143. DOI: 10.1016/j.solener.2015.04.007

17. Persis Amaliya A., Anand S., Pauline S. CTAB assisted synthesis of cobalt ferrite nanoparticles and its characterizations. J. Nanosci. Tech., 2016, vol. 2, no. 4, pp. 186—188.

18. Makinson J. D., Lee J. S., Magner S. H., De Angelis R. J., Weins W. N., Hieronymus A. S. X-ray diffraction signatures of defects in nanocrystalline materials. Adv. X Ray Anal., 2000, vol. 42, pp. 407—411.

19. Senthilkumar V., Vickraman P., Jayachandran M., Sanjeeviraja C. Structural and electrical studies of nano structured Sn1-xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at.%) prepared by co-precipitation method. J. Mater. Sci.: Mater. Electron., 2010, vol. 21, no. 4, pp. 343—348. DOI: 10.1007/s10854-009-9918-z

20. Vadivel M., Ramesh Babu R., Sethuraman K., Ramamurthi K., Arivanandhan M. Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. Mater., 2014, vol. 362, pp. 122—129. DOI: 10.1016/j.jmmm.2014.03.016

21. Mote V. D., Purushotham Y., Dole B. N. Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol-gel method. Materials & Design, 2016, vol. 96, pp. 99—105. DOI: 10.1016/j.matdes.2016.02.016

22. Vasundhara K., Achary S. N., Deshpande S. K., Babu P. D., Meena S. S., Tyagi A. K. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys., 2013, vol. 113, no. 19, p. 194101. DOI: 10.1063/1.4804946


Review

For citations:


Anand S., Amaliya A.P., Asisi M., Pauline J.S. Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(4):207-215. https://doi.org/10.17073/1609-3577-2018-4-207-215

Views: 574


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)