Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties

https://doi.org/10.17073/1609-3577-2018-4-216-226

Abstract

The Zn1-xNixO nanoparticles have been synthesized by novel co-precipitation method and systematically characterized by XRD, SEM, TEM and photo luminescence. The XRD patterns confirm the hexagonal wurzite structure without secondary phases in Ni substituted ZnO samples. SEM and TEM are used for the estimation of particle shape and size. In PL study there is a peak in the range of 380—390 nm in all samples that is attributed to the oxygen vacancies. Gas sensing tests reveal that Ni doped ZnO sensor has remarkably enhanced performance compared to pure ZnO detected at an optimum temperature 100 °C. It could detect ethanol gas in a wide concentration range with very high response, fast response–recovery time, good selectivity and stable repeatability. The possible sensing mechanism is discussed. The high response of ZnO Nanoparticles was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. The superior sensing features indicate the present Ni doped ZnO as a promising nanomaterial for gas sensors. The response time and recovery time of undoped is 75 s and 60 s and 0.25 at.% Ni are found to be 60 s and 45 s at 100 °C respectively.

About the Authors

U. Godavarti
Department of Physics, CMR Technical Campus; Thin Films and Materials Research Laboratory, Department of Physics, Dayanand Science College
India

Medchel, Hyderabad 501401, Telangana;

Latur 413512, Maharashtra

Umadevi Godavarti



V. D. Mote
Thin Films and Materials Research Laboratory, Department of Physics, Dayanand Science College
India

Latur 413512, Maharashtra

V. D. Mote



M. Dasari
Department of Physics, GITAM Institute of Technology, GITAM University
India

Visakhapatnam 530045, Andhra Pradesh

Madhavaprasad Dasari



References

1. Mitsubayashi K., Amagai H., Watanabe H., Nakayama Y. Bioelectronic sniffer with a diaphragm flow-cell for acetaldehyde vapor. Sens. Actuators B: Chem., 2003, vol. 95, no. 1–3, pp. 303—308. DOI: 10.1016/S0925-4005(03)00428-3

2. Comini E., Baratto C., Concina I., Faglia G., Falasconi M., Ferroni M., Galstyan V., Gobbi E., Ponzoni A., Vomiero A., Zappa D., Sberveglieri V., Sberveglieri G. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators B: Chem., 2013, vol. 179, pp. 3—20. DOI: 10.1016/j.snb.2012.10.027

3. Wetchakun K., Samerjai T., Tamaekong N., Liewhiran C., Siriwong C., Kruefu V., Wisitsoraat A., Tuantranont A., Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B: Chem., 2011, vol. 160, no. 1, pp. 580—591. DOI: 10.1016/j.snb.2011.08.032

4. Rai P., Song H.-M., Kim Y.-S., Song M.-K., Oh P.-R., Yoon J.-M., Yu Y.-T. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater. Lett., 2012, vol. 68, pp. 90—93. DOI: 10.1016/j.matlet.2011.10.029

5. Zhang S. L., Lim J. O., Huh J. S., Noh J. S., Lee W. Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys., 2013, vol. 13, sup. 2, pp. S156—S161. DOI: 10.1016/j.cap.2012.12.021

6. Xinchang Wang, Minggang Zhao, Fang Liu, Jianfeng Jia, Xinjian Li, Liangliang Cao. C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceram. Int., 2013, vol. 39, no. 3, pp. 2883—2887. DOI: 10.1016/j.ceramint.2012.09.062

7. Rambu A. P., Ursu L., Iftimie N., Nica V., Dobromir M., Iacomi F. Study on Ni-doped ZnO films as gas sensors. Appl. Surf. Sci., 2013, vol. 280, pp. 598—604. DOI: 10.1016/j.apsusc.2013.05.033

8. Vander Wal R. L., Hunter G. W., Xu J. C., Kulis M. J., Berger G. M., Ticich T. M. Metal-oxide nanostructure and gas-sensing performance. Sens. Actuators B: Chem., 2009, vol. 138, no. 1, pp. 113—119. DOI: 10.1016/j.snb.2009.02.020

9. Bappaditya Pal, Soumen Dhara, Giri P. K., Sarkar D. Evolution of room temperature ferromagnetism with increasing 1D growth in Ni-doped ZnO nanostructures. J. Alloy. Compd., 2015, vol. 647, pp. 558—565. DOI: 10.1016/j.jallcom.2015.05.218

10. Vijayaprasath G., Murugan R., Asaithambi S., Anandha Babu G., Sakthivel P., Mahalingam T., Hayakawa Y., Ravi G. Structural characterization and magnetic propertiesof Co co-doped Ni/ZnO nanoparticles. Appl. Phys. A, 2016, vol. 122, p. 122. DOI: 10.1007/s00339-016-9655-0

11. Sun Y., Fuge G. M., Fox N. A., Riley D. J., Ashfold M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater., 2005, vol. 17, no. 2, pp. 2477—2481. DOI: 10.1002/adma.200500726

12. Djurišić A. B., Leung Y. H., Tam K. H., Hsu Y. F., Ding L., Ge W. K., Zhong Y. C., Wong K. S., Chan W. K., Tam H. L., Cheah K. W., Kwok W. M., Phillips D. L. Defect emissions in ZnO nanostructures. Nanotechnology, 2007, vol. 18, no. 9, pp. 095702—095710. DOI: 10.1088/0957-4484/18/9/095702

13. Darvishnejad M. H., Firooz A. A., Beheshtian J., Khodadadi A. A. Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) on hexagonal ZnO plates. RSC Advances, 2016, vol. 6, no. 10, pp. 7838—7845. DOI: 10.1039/C5RA24169C

14. Motaung D. E., Kortidis I., Mhlongo G. H., Duvenhage M.-M., Swart H. C., Kiriakidisc G., Raya S. S. Correlating the magnetism and gas sensing properties of Mn-doped ZnO films enhanced by UV irradiation. RSC Advances, 2016, vol. 6, no. 31, pp. 26227—26238. DOI: 10.1039/C5RA27154A

15. Donato N., Latino M., Neri G. Novel carbon nanotubes-based hybrid composites for sensing applications. S. Bianco (Ed.). In: Carbon Nanotubes-From Research to Applications. IntechOpen, 2011. DOI: 10.5772/18855

16. Sahay P. P., Nath R. K. Al-doped ZnO thin films as methanol sensors. Sens. Actuators B: Chem., 2008, vol. 134, no. 2, pp. 654—659. DOI: 10.1016/j.snb.2008.06.006

17. Hongcheng Liu, Qu Zhou, Qingyan Zhang, Changxiang Hong, Lingna Xu, Lingfeng Jin, Weigen Chen. Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p-n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2. Sensors, 2017, vol. 17, no. 4, p. 913. DOI: 10.3390/s17040913

18. Ya-Bin Zhang, Jing Yin, Ling Li, Le-Xi Zhang, Li-Jian Bie. Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuators B: Chem., 2014, vol. 202, pp. 500—507. DOI: 10.1016/j.snb.2014.05.111

19. Prabhakar Rai, Rizwan Khan, Rafiq Ahmad, Yoon-Bong Hahn, In-Hwan Lee, Yeon-Tae Yu. Gas sensing properties of single crystalline ZnO nanowires grown by thermal evaporation technique. Curr. Appl. Phys., 2013, vol. 13, no. 8, pp. 1769—1773. DOI: 10.1016/j.cap.2013.06.005


Review

For citations:


Godavarti U., Mote V.D., Dasari M. Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(4):216-226. https://doi.org/10.17073/1609-3577-2018-4-216-226

Views: 490


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)