Влияние легирования на рабочие характеристики диодов Шотки на основе Al0,29Ga0,71As p-типа проводимости, легированного Be
Аннотация
Об авторах
Н. А. Аль-АхмадиСаудовская Аравия
Ф. А. Эбрахим
Саудовская Аравия
Х. А. Аль-Джавхари
Саудовская Аравия
Р. Х. Мари
Пакистан
М. Хенини
Великобритания
Список литературы
1. Szatkowski J., Sierański K., Płaczek-Popko E., Gumienny Z. Deep level defects in proton irradiated p-type Al0.5Ga0.5As // Physica B: Condensed Matter. 2009. V. 404, N 23–24. P. 4967—4969. DOI: 10.1016/j.physb.2009.08.235
2. Kozlov V. A., Kozlovski V. V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles // Semiconductors. 2001. V. 35, N 7. P. 735—761. DOI: 10.1134/1.1385708
3. Galbiati N., Gatti C., Grilli E., Guzzi M., Pavesi L., Henini M. Photoluminescence determination of the be binding energy in direct-gap AlGaAs // Appl. Phys. Lett. 1997. V. 71, N 21. P. 3120—3122. DOI: 10.1063/1.120265
4. Fujita S., Bedair S. M., Littlejohn M. A., Hauser J. R. Doping characteristics and electrical properties of Be-doped p-type AlxGa1-xAs by liquid phase epitaxy // J. Appl. Phys. 1980. V. 51, N 10. P. 5438. DOI: 10.1063/1.327499
5. Galbiati N., Pavesi L., Grilli E., Guzzi M., Henini M. Be doping of (311)A and (100) Al0.24Ga0.76As grown by molecular beam epitaxy // Appl. Phys. Lett. 1996. V. 69, N 27. P. 4215. DOI: 10.1063/1.116990
6. Mari R., Shafi M., Aziz M., Khatab A., Taylor D., Henini M. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE // Nanoscale Res. Lett. 2011. V. 6, N 1. P. 180. DOI: 10.1186/1556-276X-6-180
7. Mari R. H. DLTS Characterisation of Defects in III–V Compound Semiconductors Grown by MBE. PhD thesis. University of Nottingham, 2011.
8. Chand S., Kaushal P., Osvald J. Numerical simulation study of current-voltage characteristics of a Schottky diode with inverse doped surface layer // Mater. Sci. Semicond. Process. 2013. V. 16, N 2. P. 454–460. DOI: 10.1016/j.mssp.2012.08.002
9. Padovani F. A., Stratton R. Field and thermionic-field emission in Schottky barriers // Solid-State Electron. 1966. V. 9, N 7. P. 695—707. DOI: 10.1016/0038-1101(66)90097-9
10. Sze S. M., Ng Kwok K. Physics of semiconductor devices. New York: Wiley Sons, 1981. 815 p.
11. Wang Y. H., Houng M. P., Chen F. H., Sze P. W., Hong M., Mannaerts J. P. Study of AuAgFe/AlGaAs Schottky diodes fabricated by in situ molecular beam epitaxy // J. Mater. Sci.: Mater. Electron. 1992. V. 3. P. 206—210. DOI: 10.1007/BF00703027
12. Al-Ahmadi N. A., Al-Jawhari H. A. Effect of epitaxial layer thickness on the electrical properties of Ti/n-AlGaAs grown by MBE // Results Phys. 2016. V. 6. P. 67—69. DOI: 10.1016/j.rinp.2015.12.009
13. Huang L. Barrier inhomogeneities of platinum contacts to 4H-SiC // Superlattices Microstructures. 2016. V. 100. P. 648—655. DOI: 10.1016/j.spmi.2016.10.034
14. Cheung S. K., Cheung N. W. Extraction of Schottky diode parameters from forward current-voltage characteristics // Appl. Phys. Lett. 1986. V. 49, N 2. P. 85. DOI: 10.1063/1.97359
15. Jyothi I., Yang H.-D., Shim K.-H., Janardhanam V., Kang S.-M., Hong H., Choi C.-J. Temperature dependency of Schottky barrier parameters of Ti Schottky contacts to Si-on-insulator // Mater. Trans. 2013. V. 54, N 9. P. 1655—1660. DOI: 10.2320/matertrans.M2013015
16. Rodrigues A. M. Analysis of the current-transport mechanism across a CVD diamond/silicon interface // Appl. Surf. Sci. 2007. V. 253, N 14. P. 5992—5999. DOI: 10.1016/j.apsusc.2006.12.111
17. Rhoderick E. H., Williams R. H. Metal-Semiconductor Contacts. Oxford: Clarendon Press; New York: Oxford University Press, 1988. 252 p.
18. Energy Gap in III–V Ternary Semiconductors.
19. Yerişkin S. A., Balbaşı M., Demirezen S. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures // Indian J. Phys. 2017. V. 91, N 4. P. 421—430. DOI: 10.1007/s12648-016-0949-z
20. Ayyildiz E., Cetin H., Horváth Z. J. Temperature dependent electrical characteristics of Sn/p-Si Schottky diodes // Appl. Surf. Sci. 2005. V. 252, N 4. P. 1153—1158. DOI: 10.1016/j.apsusc.2005.02.044
21. Naik S. S., Reddy V. R. Electrical transport characteristics and deep level transient spectroscopy of Ni/V/n-InP Schottky barrier diodes // J. Nano-Electron. Phys. 2012. V. 4, N 2. P. 02006.
22. Werner J. H., Güttler H. H. Temperature dependence of Schottky barrier heights on silicon // J. Appl. Phys. 1993. V. 73, N 3. P. 1315. DOI: 10.1063/1.353249
23. Güçlü Ç. S., Özdemir A. F., Altindal Ş. Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range // Appl. Phys. A. 2016. V. 122, N 12. P. 1032(1-9pp). DOI: 10.1007/s00339-016-0558-x
24. Chand S., Kumar J. Effects of barrier height distribution on the behavior of a Schottky diode // J. Appl. Phys. 1997. V. 82, N 10. P. 5005. DOI: 10.1063/1.366370
25. Singh R., Sharma P., Khan M. A., Garg V., Awasthi V., Kranti A., Mukherjee S. Investigation of barrier inhomogeneities and interface state density in Au/MgZnO : Ga Schottky contact // J. Phys. D: Appl. Phys. 2016. V. 49, N 44. P. 445303. DOI: 10.1088/0022-3727/49/44/445303
Для цитирования:
Аль-Ахмади Н.А., Эбрахим Ф.А., Аль-Джавхари Х.А., Мари Р.Х., Хенини М. Влияние легирования на рабочие характеристики диодов Шотки на основе Al0,29Ga0,71As p-типа проводимости, легированного Be. Известия высших учебных заведений. Материалы электронной техники. 2018;21(4):233-241. https://doi.org/10.17073/1609-3577-2018-4-233-241