Impact of doping on the performance of p-type Be-doped Al0.29 Ga0.71As Schottky diodes
https://doi.org/10.17073/1609-3577-2018-4-233-241
Abstract
The effects of changing the acceptors concentration on the electrical characteristics of Au/Ti on Be-doped Al0.29Ga0.71As Schottky contact have been investigated in the temperature range of 100—400 K. Using three devices with three different doping levels, the barrier height (ΦB), ideality factor (n) and series resistance (RS) for each diode were evaluated using both thermionic emission (TE) theory and Cheung's method. Our experimental results showed that the sample with a moderate doping concentration of 3 · 1016 cm-3 has the best performance, including ideality factor of 1.25 and rectification ratio of 2.24 · 103 at room temperature. All samples showed an abnormal behavior of reducing ΦB and increasing n with increase of temperature. This behavior was attributed, in case of low concentration samples, to barrier inhomogeneity and was explained by assuming a Gaussian distribution of barrier heights at the interface. While for the heavily doped sample, such non-ideal manner was ascribed with tunneling through the field emission (FE) mechanism.
About the Authors
N. A. Al-AhmadiSaudi Arabia
Department of Physics, Jeddah 21589
Noorah A. Al-Ahmadi
F. A. Ebrahim
Saudi Arabia
Department of Physics, Jeddah 21589
Fadiah A. Ebrahim
H. A. Al-Jawhari
Saudi Arabia
Department of Physics, Jeddah 21589
Hala A. Al-Jawhari
R. H. Mari
Pakistan
Institute of Physics, Jamshoro
Riaz H. Mari
M. Henini
United Kingdom
School of Physics and Astronomy, NG7 2RD, UK;
Nottingham Nanoscience and Nanotechnology Center (NNNC), NG7 2RD, UK
Mohamed Henini
References
1. Szatkowski J., Sierański K., Płaczek-Popko E., Gumienny Z. Deep level defects in proton irradiated p-type Al0.5Ga0.5As. Physica B: Condensed Matter, 2009, vol. 404, no. 23–24, pp. 4967—4969. DOI: 10.1016/j.physb.2009.08.235
2. Kozlov V. A., Kozlovski V. V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. Semiconductors, 2001, vol. 35, no. 7, pp. 735—761. DOI: 10.1134/1.1385708
3. Galbiati N., Gatti C., Grilli E., Guzzi M., Pavesi L., Henini M. Photoluminescence determination of the be binding energy in direct-gap AlGaAs. Appl. Phys. Lett., 1997, vol. 71, no. 21, pp. 3120—3122. DOI: 10.1063/1.120265
4. Fujita S., Bedair S. M., Littlejohn M. A., Hauser J. R. Doping characteristics and electrical properties of Be-doped p-type AlxGa1-xAs by liquid phase epitaxy. J. Appl. Phys., 1980, vol. 51, no. 10, p. 5438. DOI: 10.1063/1.327499
5. Galbiati N., Pavesi L., Grilli E., Guzzi M., Henini M. Be doping of (311)A and (100) Al0.24Ga0.76As grown by molecular beam epitaxy. Appl. Phys. Lett., 1996, vol. 69, no. 27, p. 4215. DOI: 10.1063/1.116990
6. Mari R., Shafi M., Aziz M., Khatab A., Taylor D., Henini M. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE. Nanoscale Res. Lett., 2011, vol. 6, no. 1, p. 180. DOI: 10.1186/1556-276X-6-180
7. Mari R.H. DLTS Characterisation of Defects in III–V Compound Semiconductors Grown by MBE. PhD thesis. University of Nottingham, 2011.
8. Chand S., Kaushal P., Osvald J. Numerical simulation study of current-voltage characteristics of a Schottky diode with inverse doped surface layer. Mater. Sci. Semicond. Process., 2013, vol. 16, no. 2, pp. 454—460. DOI: 10.1016/j.mssp.2012.08.002
9. Padovani F. A., Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron., 1966, vol. 9, no. 7, pp. 695—707. DOI: 10.1016/0038-1101(66)90097-9
10. Sze S. M., Ng Kwok K. Physics of semiconductor devices. New York: Wiley Sons, 1981, 815 p.
11. Wang Y. H., Houng M. P., Chen F. H., Sze P. W., Hong M., Mannaerts J. P. Study of AuAgFe/AlGaAs Schottky diodes fabricated byin situ molecular beam epitaxy. J. Mater. Sci.: Mater. Electron., 1992, vol. 3, pp. 206—210. DOI: 10.1007/BF00703027
12. Al-Ahmadi N. A., Al-Jawhari H. A. Effect of epitaxial layer thickness on the electrical properties of Ti/n-AlGaAs grown by MBE. Results Phys., 2016, vol. 6, pp. 67—69. DOI: 10.1016/j.rinp.2015.12.009
13. Huang L. Barrier inhomogeneities of platinum contacts to 4H-SiC. Superlattices Microstructures, 2016, vol. 100, pp. 648—655. DOI: 10.1016/j.spmi.2016.10.034
14. Cheung S. K., Cheung N. W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett., 1986, vol. 49, no. 2, p. 85. DOI: 10.1063/1.97359
15. Jyothi I., Yang H.-D., Shim K.-H., Janardhanam V., Kang S.-M., Hong H., Choi C.-J. Temperature dependency of Schottky barrier parameters of Ti Schottky contacts to Si-on-insulator. Mater. Trans., 2013, vol. 54, no. 9, pp. 1655—1660. DOI: 10.2320/matertrans.M2013015
16. Rodrigues A. M. Analysis of the current-transport mechanism across a CVD diamond/silicon interface. Appl. Surf. Sci., 2007, vol. 253, no. 14, pp. 5992—5999. DOI: 10.1016/j.apsusc.2006.12.111
17. Rhoderick E. H., Williams R. H. Metal-Semiconductor Contacts. Oxford: Clarendon Press; New York: Oxford University Press, 1988, 252 p.
18. Energy Gap in III–V Ternary Semiconductors.
19. Yerişkin S. A., Balbaşı M., Demirezen S. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J. Phys., 2017, vol. 91, no. 4, pp. 421—430. DOI: 10.1007/s12648-016-0949-z
20. Ayyildiz E., Cetin H., Horváth Z. J. Temperature dependent electrical characteristics of Sn/p-Si Schottky diodes. Appl. Surf. Sci., 2005, vol. 252, no. 4, pp. 1153—1158. DOI: 10.1016/j.apsusc.2005.02.044
21. Naik S. S., Reddy V. R. Electrical transport characteristics and deep level transient spectroscopy of Ni/V/n-InP Schottky barrier diodes. J. Nano-Electron. Phys., 2012, vol. 4, no. 2, p. 02006.
22. Werner J. H., Güttler H. H. Temperature dependence of Schottky barrier heights on silicon. J. Appl. Phys., 1993, vol. 73, no. 3, p. 1315. DOI: 10.1063/1.353249
23. Güçlü Ç. S., Özdemir A. F., Altindal Ş. Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A. 2016, vol. 122, no. 12, p. 1032(1-9pp). DOI: 10.1007/s00339-016-0558-x
24. Chand S., Kumar J. Effects of barrier height distribution on the behavior of a Schottky diode. J. Appl. Phys., 1997, vol. 82, no. 10, p. 5005. DOI: 10.1063/1.366370
25. Singh R., Sharma P., Khan M. A., Garg V., Awasthi V., Kranti A., Mukherjee S. Investigation of barrier inhomogeneities and interface state density in Au/MgZnO: Ga Schottky contact. J. Phys. D: Appl. Phys., 2016, vol. 49, no. 44, p. 445303. DOI: 10.1088/0022-3727/49/44/445303
Review
For citations:
Al-Ahmadi N.A., Ebrahim F.A., Al-Jawhari H.A., Mari R.H., Henini M. Impact of doping on the performance of p-type Be-doped Al0.29 Ga0.71As Schottky diodes. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(4):233-241. https://doi.org/10.17073/1609-3577-2018-4-233-241