Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Modification of germanium surface exposed to radiation of a nanosecond ultraviolet laser

https://doi.org/10.17073/1609-3577-2020-3-203-212

Abstract

Modification of the polished {111} surface of single-crystal germanium (n-type, resistivity 47 Ohm · cm), exposed to radiation of a focused frequency-pulse nanosecond ultraviolet Nd : YaG laser, was studied by optical profilometry, scanning electron and probe microscopy. It was revealed, that the threshold of plasma formation with generation of a crater on the surface, occurs at an energy density of E ~ 1.2—1.3 J/cm2. When the sample was stationary, at E ~ 0.1 J/cm2 irreversible damage to the surface occurred. When scanning the surface with radiation at E ~ 0.50—1.15 J/cm2, in the absence of noticeable traces of crater formation, the generation of etching pits with a regular triangular shape was observed, the concentration of which was (3—5) · 105 cm2. The figures resemble dislocation-etching pits, usually obtained by selective chemical etching.
Dislocations were detected by ablation because of exposure to laser radiation. The centers of ablation nucleation are dislocations that come to the crystal surface. The transverse dimension of etching pits was ~ 5—10 µm and their overlap led to an alternating picture of trihedral pyramids, formed by the {111} planes. The presented images show the rounded edges and tops of the pyramids and the height of the profile of the figures ~ 1—2 μm. The linear dimensions of the pits testify a rapid flow of the process. Based on the total time of exposure to radiation on the surface ~ 200 ns, the rate of formation of flat faces in the pits equal to ~ 0.1—0.3 m/s, which is several orders of magnitude higher, than the rate of formation of the same faces during crystal growth was established. The depth of the surface layer, in which the structure was formed, was ~ 15 μm.

About the Authors

V. Yu. Zheleznov
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Vyacheslav Yu. Zheleznov: Junior Researcher



T. V. Malinskiy
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Taras V. Malinskiy: Cand. Sci. (Eng.), Associate Professor, Head of the Laboratory (Moscow Branch)



S. I. Mikolutskiy
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Sergey I. Mikolutskiy: Cand. Sci. (Phys.-Math.), Senior Researcher



V. E. Rogalin
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Vladimir E. Rogalin: Dr. Sci. (Phys.-Math.), Head of Laboratory



S. A. Filin
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Sergey A. Filin: Cand. Sci. (Eng.), Associate Professor, Leading Researcher (Moscow Branch)



Yu. V. Khomich
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Yuriy V. Khomich: Researcher



V. A. Yamshchikov
Institute of Electrophysics and Electric Power of the Russian Academy of Sciences
Russian Federation

18 Dvortsovaya Nab., St. Petersburg 191186

Vladimir A. Yamshchikov: Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Eng.), Director of Moscow Branch



I. A. Kaplunov
Tver State University
Russian Federation

33 Zhelyabova Str., Tver, 170100

Ivan A. Kaplunov: Dr. Sci. (Eng.), Chief of the Department of Applied Physics



A. I. Ivanova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver, 170100

Aleksandra I. Ivanova: Cand. Sci. (Phys.-Math.), Associate Professor



References

1. Claeys L., Simoen E. Germanium-based technologies: from materials to devices. Berlin: Elsevier, 2007, 480 p. DOI: 10.1016/S1369-7021(07)70279-1

2. Bosi M., Atolini G. Germanium: Epitaxy and its Application. Progress in Crystal Growth and Characterization of Materials, 2010, vol. 56, no. 3–4, pp. 146—174. DOI: 10.1016/j.pcrysgrow.2010.09.002

3. Kaplunov I. A., Rogalin V. E. Optical properties and application of germanium in photonics. Photonics, 2019, vol. 13, no. 1, pp. 88—106. DOI: 10.22184/FRos.2019.13.1.88.106

4. Levinzon D. I., Rovinsky R. E., Rogalin V. E., Rykun E. P., Tsenina I. S., Sheikhet E. G., Trainin A. L. Study of single crystals of profile germanium irradiated with a pulsed CO2-laser. Izv. AN USSR. Ser. fizicheskaya, 1979, vol. 43, no. 9, pp. 2001—2005. (In Russ.)

5. Alekseev E. E., Kazantsev S. Yu., Kononov I. G., Rogalin V. E., Firsov K. N. Two-photon absorption of nonchain HF laser radiation in germanium single crystals. Opt. Spectrosc., 2018, vol. 124, no. 6, pp. 821—825. DOI: 10.1134/S0030400X18060036

6. Levinzon D. I., Rovinskii R. E., Rogalin V. E., Rykun E. P., Tsenina I. S. Shershel V. A. The absorption of IR radiation in germanium. Materialy ІX soveshchaniya po polucheniyu profilirovannykh kristallov i izdelii sposobom Stepanova i ikh primeneniyu v narodnom khozyaistve = In Proc. Ninth Conference on Obtaining Profiled Crystals and Items by the Stepanov Method and Their Application in the National Economy. Leningrad: FTI im. Ioffe, 1982, pp. 123—126. (In Russ.)

7. Armand Pilon F. T., Lyasota A., Niquet Y.-M., Reboud V., Calvo V., Pauc N., Widiez J., Bonzon C., Hartmann J. M., Chelnokov A., Faist J., Sigg H. Lasing in strained germanium microbridges. Nature Communications, 2019, vol. 10, no. 1, p. 2724. DOI: 10.1038/s41467-019-10655-6

8. Smirnov Yu. M., Kaplunov I. A. Germanium monocrystals for infrared technology. Materialovedenie, 2004, vol. 5, pp. 48—52. (In Russ.)

9. Korotaev V. V., Mel’nikov G. S., Miheev S. V., Samkov V. M., Soldatov Yu. I. Osnovy teplovideniya [Fundamentals of thermal imaging]. St. Petersburg: ITMO, 2012, 122 p. (In Russ.)

10. Mashanovich G. Z., Mitchell C. J., Penades J. S., Ali Z., Khokhar A. Z., Littlejohns C. G., Cao W., Zhibo Qu Z., Stanković S., Gardes F. Y., Masaud T. B., Chong H. M., Mittal V., Murugan G. S., James S. Wilkinson J. S., Peacock A. C., Nedeljkovic M. Germanium mid-infrared photonic devices. J. Lightwave Technol., 2017, vol. 35, no. 4, pp. 624—630. DOI: 10.1109/JLT.2016.2632301

11. Shimanskii A. F., Gorodishcheva A. N., Kopytkova S. A., Kulakovskaya T. V. Thermal stability of the properties of germanium crystals for IR optics. J. Physics: Conference Series, 2019, vol. 1353, no. 1, p. 12062. DOI: 10.1088/1742-6596/1353/1/012062

12. Depuydt B., Theuwis A., Romandic I. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Mater. Sci. Semicond. Proc., 2006, vol. 9, no. 4, pp. 437—443. DOI: 10.1016/j.mssp.2006.08.002

13. Ordu M., Guo J., Pack G. Ng, Shah P., Ramachandran S., Hong M. K., Ziegler L. D., Basu S. N., Erramilli S. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy. AIP Advances, 2017, vol. 7, no. 9, p. 095125. DOI: 10.1063/1.5003027

14. Peacock A. C., Healy N. Semiconductor optical fibres for infrared applications: A review. Semiconductor Science and Technology, 2016, vol. 31, no. 10, p. 103004. DOI: 0.1088/0268-1242/31/10/103004

15. Heinig K.-H. Effect of local melting on semiconductor surfaces. In: Energy Pulse Modification of Semiconductors and Related Materials. Dresden: Zentralinstitut für Kernforshung, 1985, pp. 265—279.

16. Harzic R. Le, Dörr D., Sauer D., Neumeier M., Epple M., Zimmermann H., Stracke F. Formation of periodic nanoripples on silicon and germanium induced by femtosecond laser pulses physics. Physics Procedia, 2011, vol. 12, pp. 29—36. DOI: 10.1016/j.phpro.2011.03.102

17. Qi D., Li X., Wang P., Chen S., Huang W., Li C., Huang K., Lai H. Evolution of laser-induced specific nanostructures on SiGe compounds via laser irradiation intensity tuning. IEEE Photon. J., 2014, vol. 6, no. 1, p. 2200005 (5pp.). DOI: 10.1109/JPHOT.2013.2294631

18. Vadavalli S., Valligatla S., Neelamraju B., Dar M. H., Chiasera A., Ferrari M., Desai1 N. R. Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone. Front. Phys., 2014, vol. 2, p. 57. DOI: 10.3389/fphy.2014.00057

19. Iqbal M. H., Bashir S., Rafique M. S., Dawood A., Akram M., Mahmood K., Hayat A., Ahmad R., Hussain T., Mahmood A. Pulsed laser ablation of germanium under vacuum and hydrogen environments at various fluences. Appl. Sur. Sci., 2015, vol. 344, pp. 146—158. DOI: 10.1016/j.apsusc.2015.03.117

20. Banishev A. F., Balykina E. A. Surface damage of silicon and copper by pulsed and pulse-periodic action of an Nd:YAG laser. Quantum Electron., 1997, vol. 27, no. 6, pp. 542—544. DOI: 10.1070/QE1997v027n06ABEH000985

21. Veiko V. P., Dorofeev I. A., Imas Ya. A., Kalugina T. I., Libenson M. N., Shandybina G. D. Formation of periodic structures on a silicon surface by a millisecond Nd-laser pulse. Pis'ma v Zhurnal Tekhnicheskoi Fiziki, 1984, vol. 10, no. 1, pp. 15—20. (In Russ.)

22. Khaydukov E. V., Khramova O. D., Roch'eva V. V., Zuev D. A., Novodvorsky O. A., Lotin A. A., Parshina L. S., Poroikov A. Yu., Timofeev M. A., Untila G. G. Laser texturing of silicon for creating solar cells. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = J. Instrument Engineering, 2011, vol. 54, no. 2, pp. 26—32. (In Russ.)

23. Voronov V. V., Dolgaev S. I., Lavrishchev S. V., Lyalin A. A., Simakin A. V., Shafeev G. A. Formation of conic microstructures upon pulsed laser evaporation of solids. Quantum Electron., 2000, vol. 30, no. 8, pp. 710—714. DOI: 10.1070/QE2000v030n08ABEH001795

24. Bublik V. T., Dubrovina A. N. Metody issledovaniya struktury poluprovodnikov i metallov [Methods of studying the structure of semiconductors and metals]. Moscow: Metallurgiya, 1978, 272 p. (In Russ.)

25. Manoj Kumar, Mavi H. S., Rath S., Shukla A. K., Vankar V. D. Fabrication of nanopatterned germanium surface by laser-induced etching: AFM, Raman and PL studies. Physica E: Low-dimensional Systems and Nanostructures, 2008, vol. 40, no. 9, pp. 2904—2910 DOI: 10.1016/j.physe.2008.02.007

26. Makin V. S., Pestov Yu. I., Privalov V. E. Thermal waveguide and fine scale periodic relief on the semiconductor’s surface induced by TEA CO2 laser radiation. Optical Memory and Neural Networks (Information Optics), 2012, vol. 21, no. 1, pp. 52—61. DOI: 10.3103/S1060992X12010079

27. Konov V. I., Prokhorov A. M., Sichugov V. A., Tischenko A. V., Tokarev V. N. Time and space evolution of the periodic structures induced onto the surface of laser-irradiated solid samples. Zhurnal tekhnicheskoi fiziki = Technical Physics, 1983, vol. 53, no. 12, pp. 2238—2286. (In Russ.)

28. Asikkalieva K. H. Laser-driven periodic structures on the surface of monocrystalline silicon. Fundamental'nye problemy sovremennogo materialovedeniya, 2013, vol. 10, no. 1, pp. 21—24. (In Russ.)

29. Ashikkalieva K. H., Kanygina O. N., Vasilchenko A. S. Modifications of monocrystal silicon surface under isothermic and laser annealing. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2012, no. 9, pp. 96—100. (In Russ.)

30. Ashikkalieva K. H., Kanygina O. N. Formation of periodic structures on the surface of single-crystal silicon under pulsed laser action. Deformaciya i razrushenie materialov, 2012, no. 5, pp. 12—15. (In Russ.)

31. Polyakov D. S., Salnikov N. M., Veiko V. P., Shimko A. A., Mikhaylova А. А. Formation of antireflection microrelief on silicon surface irradiated with nanosecond itterbium laser. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = J. Instrument Engineering, 2017, vol. 60, no. 11, pp. 1070—1076. (In Russ.). DOI: 10.17586/0021-3454-2017-60-11-1070-1076

32. Zhelezny S. V. Modification of the photoelectric properties of semiconductor materials by pulsed light. Ohrana, bezopasnost', svyaz', 2018, vol. 3, no. 3, pp. 18—26. (In Russ.)

33. Zhelezny S. V., Loginov V. A., Moskaleva E. A. Analysis of changes in the surface morphology of semiconductor radio materials under pulsed light exposure. Vestnik Voronezhskogo instituta MVD Rossii, 2016, no. 4, pp. 210—218. (In Russ.)

34. Patent 2501057 (RF). Sposob obrabotki poverhnosti monokristallicheskogo kremniya orientacii (111) [A method of surface treatment of monocrystalline silicon orientation (111)]. K. H. Ashikkalieva, O. N. Kanygina, 2012.

35. Malinskiy T. V., Mikolutskiy S. I., Rogalin V. E., Khomich Yu. V., Yamshchikov V. A., Kaplunov I. A., Ivanova A. I. Plastic deformation of copper under the action of high-power nanosecond UV laser pulse. Tech. Phys. Lett., 2020, vol. 46, no. 8, pp. 831—834. DOI: 10.1134/S1063785020080234

36. Ursu I., Mihailescu I. N., Popa Al., Prohorov A. M., Ageev V. P., Gorbunov A. A., Konov V. I. Studies of the change of a metallic surface microrelief as a result of multiple-pulse action of powerful UV laser pulses. J. Appl. Phys., 1985, vol. 58, no. 10, pp. 3909—3913. DOI: 10.1063/1.335611

37. Li Y., Musaev O. R., Wrobel J. M., Kruger M. B. Laser ablation in liquids of germanium in externally applied electric fields. J. Laser Appl., 2016, vol. 28, no. 2, p. 022004. DOI: 10.2351/1.4940793

38. Ivlev G. D., Malevich V. L. Heating and melting of single-crystal germanium by nanosecond laser pulses. Soviet J. Quantum Electron., 1988, vol. 18, no. 12, pp. 1626—1627. DOI: 10.1070/QE1988v018n12ABEH012781

39. TU 48-4-330-75. Germanij monokristallicheskij dlya optoelektroniki. Tekhnicheskie usloviya [Single-crystal germanium for optoelectronics. Technical conditions]. (In Russ.)

40. Okatov M. A. Spravochnik tekhnologa-optika [Handbook of the optical technologist]. St. Petersburg: Politekhnika, 2004, 679 p. (In Russ.)

41. Mikolutskiy S. I., Khasaya R. R., Khomich Yu. V., Yamshchikov V. A. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses. J. Phys.: Conference Series, 2018, vol. 987, p. 012007 (5 pp.). DOI: 10.1088/1742-6596/987/1/012007

42. Zheleznov Yu. A., Malinskiy T. V., Mikolutskiy S. I., Tokarev V. N., Khasaya R. R., Khomich Yu. V., Yamschikov V. A. Experimental setup for direct laser micro-and nanostructuring of solid surface. Uspekhi Prikladnoi Fiziki, 2014, vol. 2, no. 3, pp. 311—316. (In Russ.)

43. Ganin D. V., Mikolutskiy S. I., Tokarev V. N., Khomich V. Yu. , Shmakov V. A., Yamshchikov V. A. Formation of micron and submicron structures on a zirconium oxide surface exposed to nanosecond laser radiation. Quantum Electron., 2014, vol. 44, no. 4, pp. 317—321. DOI: 10.1070/QE2014v044n04ABEH015219

44. Anisimov S. I., Imas Ya. A., Romanov G. S., Khodyko Yu. V. Dejstvie izlucheniya bol'shoj moshchnosti na metally [The effect of high-power radiation on metals]. Moscow: Nauka, 1970, 272 p. (In Russ.)

45. Nunley T. N., Fernando N. S., Samarasingha N., Moya J. M., Nelson C. M., Medina A. A., Zollner S. Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multi-sample ellipsometry investigation. J. Vac. Sci. Technol., 2016, vol. 34, no. 6, p. 061205. DOI: 10.1116/1.4963075

46. Aspnes D. E., Studna A. A.. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 1983, vol. 27, no. 2, pp. 985—1009. DOI: 10.1103/PhysRevB.27.985

47. Jellison G. E. Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry. Opt. Mat., 1992, vol. 1, no. 3, pp. 151—160. DOI: 10.1016/0925-3467(92)90022-F

48. Libenson M. N., Yakovlev E. B., Shandybina G. D. Vzaimodeistvie lazernogo izlucheniya s veshchestvom (silovaya optika). Ch. I. Pogloshchenie lazernogo izlucheniya v veshchestve [Interaction of laser radiation with matter (power optics). Part I. Absorption of laser radiation in matter]. St. Petersburg: ITMO, 2008, 141 p. (In Russ.)

49. Вlоembergen N. Electric breakdown in solids under the action of laser radiation. Quantum Electron., 1974, vol. 1, no. 4, pp. 786—805. (In Russ.)

50. Kaplunov I. A., Kolesnikov A. I., Ivanova A. I., Podkopaev O. I., Tretiakov S. A., Grechishkin R. M. Surface micromorphology of germanium single crystal boules grown from melt. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, vol. 9, no. 3, pp. 630—635. DOI: 10.1134/S102745101503026X

51. Kaplunov I. A., Shelopaev A. V., Kolesnikov A. I. Structural defects in germanium single crystals. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2010, vol. 4, no. 6, pp. 994—997. DOI: 10.1134/S1027451010060194


Review

For citations:


Zheleznov V.Yu., Malinskiy T.V., Mikolutskiy S.I., Rogalin V.E., Filin S.A., Khomich Yu.V., Yamshchikov V.A., Kaplunov I.A., Ivanova A.I. Modification of germanium surface exposed to radiation of a nanosecond ultraviolet laser. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(3):203-212. (In Russ.) https://doi.org/10.17073/1609-3577-2020-3-203-212

Views: 921


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)