Surface-modified boroncarbon BC5 nanotube with amine group as a sensor device element: theoretical research
https://doi.org/10.17073/1609-3577-2020-4-253-259
EDN: DVFDJB
Abstract
The modification of boron-carbon nanotubes by functional groups is relevant in connection with the intensive development of the nano-industry, in particular, nano- and microelectronics. The thus modified nanotube can be used as an element of a sensor device for detecting micro amounts of various substances, for example metals included in salts and alkalis. The possibility of creating a highly effective sensor based on a single-layer boron-carbon ВС5 nanotube with a surface modified functional amine group (—NH2) is being discussed in this paper. Results of quantum-chemical studies showed that the functional amine group connecting to the boron-carbon nanotube (BCNT) type (6, 0) at a distance of 0.16 nm (when modified to both a surface carbon atom and a boron atom), and to BCNT type (6, 6) — at a distance of 0.16 nm when the group connecting to the carbon atom and 0.17 nm when connecting to the boron atom, which indicates the emergence of a chemical bond between the investigated BCNT and the amine group. The results of computer simulation of interaction between surface-modified ВС5 nanotube and alkali metal atoms (lithium, sodium, potassium) to be initialized are presented. The sensory interaction of the modified boron-carbon nanosystem with metal atoms is investigated, at which the selected atoms are identified at a certain distance. When reacting with alkali metal atoms in the BC5 + NH2 complex, it increases the number of carriers due to the transfer of electron density from metal atoms to modified BCNT. The results presented in this paper were obtained within the molecular cluster model by quantum-chemical calculations using the calculating DFT method with exchange-correlation functionality B3LYP (valence-split basis set 6-31G). It has been shown that the amine group modified boron-carbon ВС5 nanotube shows a sensory response to the above alkali metal atoms and can be used as an element of the sensor device.
About the Authors
I. V. ZaporotskovaRussian Federation
100 Universitetskiy Prospect, Volgograd 400062
Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies
E. S. Dryuchkov
Russian Federation
100 Universitetskiy Prospect, Volgograd 400062
Evgeniy S. Dryuchkov — Postgraduate Student
N. P. Boroznina
Russian Federation
100 Universitetskiy Prospect, Volgograd 400062
Nataliya P. Boroznina — Dr. Sci. (Phys.-Math.), Professor
L. V. Kozhitov
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk, Moscow Region 142103
Alena V. Popkova — Senior Researcher
References
1. Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes. London: Academic Press, Inc., 1996, 965 p.
2. Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon. London: Imperial College Press, 1998, 262 p.
3. Zaporotskova I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ikh osnove: stroenie i elektronnye svoistva [Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties]. Volgograd: VolSU, 2009, 490 p. (In Russ.)
4. Mohamed A. E.-M. A., Mohamed M. A. Carbon nanotubes: Synthesis, characterization, and applications. In: Carbon Nanomaterials for Agri-food and Environmental Applications. Elsevier Inc., 2019, pp. 21—32. DOI: 10.1016/B978-0-12-819786-8.00002-5
5. Arunkumar T., Karthikeyan R., Ram Subramani R., Viswanathan K., Anish M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). International Journal of Ambient Energy, 2020, vol. 41, no. 4, pp. 452—456. DOI: 10.1080/01430750.2018.1472657
6. Tomilin O. B., Rodionova E. V., Rodin E. A., Poroshina M. D., Frolov A. S. The effect of carbon nanotube modifications on their emission properties. Fullerenes Nanotubes and Carbon Nanostructures, 2020, vol. 28, no. 2, pp. 123—128. DOI: 10.1080/1536383X.2019.1680978
7. Savin A. V., Savina O. I. An effect of chemical modification of surface of carbon nanotubes on their thermal conductivity. Physics of the Solid State, 2019, vol. 61, no. 2, pp. 279—284. DOI: 10.1134/S1063783419020252
8. Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. Berlin: Springer-Verlag, 2000, 464 p.
9. D'yachkov P. N. Elektronnye svoistva i primenenie nanotrubok [Electronic properties and use of nanotubes]. Moscow: BINOM. Laboratoriya znanii, 2010, 488 p. (In Russ.)
10. Wojtkiewicz J., Brzostowski B., Pilch M. Electronic and optical properties of carbon nanotubes directed to their applications in solar cells. PRAM 2019: Parallel Processing and Applied Mathematics. Poland, 2020, pp. 341—349. DOI: 10.1007/978-3-030-43222-5_30
11. Suhito I. R., Koo K.-M., Kim T. H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells. Biomedicines, 2021, vol. 9, no. 1, pp. 1—20. DOI: 10.3390/biomedicines9010015
12. Park S. H., Bai S.-J., Song Y. S. Improved performance of carbon nanotubes embedded photomicrobial solar cell. Nanotechnology, 2020, vol. 31, no. 11, p. 115401. DOI: 10.1088/1361-6528/ab5b2a
13. Liu H., Li Y. Modified carbon nanotubes for hydrogen storage at moderate pressure and room temperature. Fullerenes Nanotubes and Carbon Nanostructures, 2020, vol. 28, no. 8, pp. 663—670. DOI: 10.1080/1536383X.2020.1738396
14. Manut A., Zoolfakar A. S., Mamat M. H., Ab Ghani N. S., Zolkapli M. Characterization of titanium dioxide (TiO2) nanotubes for resistive-type humidity sensor. IEEE International Conference on Semiconductor Electronics, Proceedings (ICSE). Vietnam, 2020, pp. 104—107. DOI: 10.1109/ICSE49846.2020.9166854
15. Aydın M. T. A., Hoşgün H. L. Hydrothermal synthesis and characterization of vanadium-doped titanium dioxide nanotubes. Journal of the Australian Ceramic Society, 2020, vol. 56, no. 2, pp. 645—651. DOI: 10.1007/s41779-019-00382-y
16. Hussain R. A., Hussain I. Metal telluride nanotubes: Synthesis, and applications. Materials Chemistry and Physics, 2020, vol. 256, p. 123691. DOI: 10.1016/j.matchemphys.2020.123691
17. Fujisawa K., Hayashi T., Endo M., Terrones M., Kim J. H., Kim Y. A. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale, 2018, vol. 10, no. 26, pp. 12723—12733. DOI: 10.1039/c8nr02323a
18. Liu Y., Khavrus V., Lehmann T., Yang H.-L., Stepien L., Greifzu M., Oswald S., Gemming T., Bezugly V., Cuniberti G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices. ACS Applied Energy Materials, 2020, vol. 3, no. 3, pp. 2556—2564. DOI: 10.1021/acsaem.9b02243
19. Fakhrabadi M. M. S., Allahverdizadeh A., Norouzifard V., Dadashzadeh B. Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes. Solid State Communications, 2012, vol. 152, no. 21, pp. 1973—1979. DOI: 10.1016/j.ssc.2012.08.003
20. Rubio A. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes. Physics Revier Series B. Condenced Matter, 2004, vol. 69, p. 245403. DOI: 10.1103/PhysRevB.69.245403
21. Debnarayan J., Sun C.-L., Chen L.-C., Chen K.-H. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science, 2013, vol. 58, p. 565. DOI: 10.1016/j.pmatsci.2013.01.003
22. Boroznina N. P., Boroznin S. V., Zaporotskova I. V., Kozhitov L. V., Popkova A. V. On the practicability of sensors based on surface carboxylated boron-carbon nanotubes. Russian Journal of Inorganic Chemistry, 2019, vol. 64, no. 1, pp. 74—78. DOI: 10.1134/S0036023619010029
23. Boroznina N. P., Zaporotskova I. V., Boroznin S. V., Dryuchkov E. S. Sensors based on amino group surface-modified CNTs. Chemosensors, 2019, vol. 7, no. 1, p. 11. DOI: 10.3390/CHEMOSENSORS7010011
24. Koch W., Holthausen M. C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001, 294 p.
25. Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. J. 6-31G* basis set for third-row atoms. Journal of Computational Chemistry, 2001, vol. 22, no. 9, pp. 976—984. DOI: 10.1002/jcc.1058
Review
For citations:
Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boroncarbon BC5 nanotube with amine group as a sensor device element: theoretical research. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(4):253-259. (In Russ.) https://doi.org/10.17073/1609-3577-2020-4-253-259. EDN: DVFDJB