Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Electromagnetic and mechanical properties of nanocomposites polyacrylonitrile/carbon nanotubes

https://doi.org/10.17073/1609-3577-2017-3-206-212

Abstract

The films of carbon-polymer nanocomposite PAN/SWCNT with different filler concentrations, varying from 0.5 to 30 wt.%, are synthesized. It found that the use of fillers in the polymer composite on the basis of PAN, in the form of SWNTs, significantly affects the mechanical properties of the polymer, in particular, the tensile strength increases. The study of electrophysical properties showed that when SWNT fillers are introduced from 0.5 to 30 wt.%, the electrical conductivity increases by 2 orders of magnitude due to the increase in the percolation degree and by 7 orders of magnitude in comparison with pure PAN. The dielectric constant and reflectance (R), transmission (T), absorption (A) in the terahertz range are measured. It found that the reflection coefficient is nonlinearly dependent on the concentration of carbon nanotubes, and the minimum reflection coefficient is 0.55 a.u. is observed at a concentration of 0.5 wt.%, while materials with a SWNT concentration of more than 5 wt.% show almost identical reflection coefficient at a sufficiently low transmission factor.

About the Authors

L. V. Kozhitov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Lev V. Kozhitov: Dr. Sci. (Eng.), Professor



A. V. Shadrinov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Aleksey V. Shadrinov: Postgraduate Student



D. G. Muratov
National University of Science and Technology MISiS; A.V. Topchiev Institute of Petrochemical Synthesis, RAS
Russian Federation

4 Leninsky Prospekt, Moscow 119049;

29 Leninsky prospekt, Moscow 119991

Dmitriy G. Muratov: Cand. Sci. (Eng.), Senior Researcher



E. Yu. Korovin
National Research Tomsk State University
Russian Federation

36 Lenin Ave., Tomsk 634050

Evgeniy Yu. Korovin: Cand. Sci. (Phys.-Math.), Assist. Prof.



A. V. Popkova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Alyona V. Popkova: Cand. Sci. (Eng.), Researcher



References

1. European Commission. Directorate-General for Health and Food Safety // European Commission DG SANTE, 2015. URL: https://ec.europa.eu/info/departments/health-and-food-safety_en

2. Ivanov V. P., Zalogin N. N. Side-by-side electromagnetic radiation of electronic computers and their disguise. Zashchita informatsii. INSIDE, 2010, vol. 1, pp. 60—64. (In Russ.)

3. Oueiny C., Berlioz S., Perrin F.-X. Carbon nanotube-polyaniline composites. Progress in Polymer Science, 2014, vol. 39, no. 4, pp. 707—748. DOI: 10.1016/j.progpolymsci.2013.08.009

4. Cuiling Hou, Tiehu Li, Tingkai Zhao, Tao Cheng, Wenjuan Zhang, Guangming Li. Microwave absorption and mechanical properties of La(NO3)3-doped multi-walled carbon nanotube/polyvinyl chloride composites. Mater. Lett., 2012, vol. 67, no. 1, pp. 84—87. DOI: 10.1016/j.matlet.2011.09.036

5. Zhou Wang, Guang-Lin Zhao. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2—20 GHz. Open Journal of Composite Materials, 2013, vol. 3, no. 2, pp. 17—23. DOI: 10.4236/ojcm.2013.32003

6. Syazwan M. M., Hashim M., Azis R. S., Ismail I., Kanagesan S., Hapishah A. N. Enhancing absorption properties of Mg—Ti substituted barium hexaferrite nanocomposite through the addition of MWCNT. J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 12, pp. 8429—8436. DOI: 10.1007/s10854-017-6561-y

7. Ghasemi A. Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magnetism and Magnetic Mater., 2011, vol. 323, pp. 3133—3137. DOI: 10.1016/j.jmmm.2011.06.070

8. Sutradhar S., Das S., Chakrabarti P. K. Magnetic and enhanced microwave absorption properties of nanoparticles of Li0.32Zn0.26Cu0.1Fe2.32O4 encapsulated in carbon nanotubes. Materials Lett., 2013, vol. 95, pp. 145—148. DOI: 10.1016/j.matlet.2012.12.069

9. Lisenkov E. А., Klepko V. V., Yakovlev Yu. V. Influence of the filler’s size on the percolation behavior in the polyethylene glycol/carbon nanotubes system. J. Nano-Electron. Phys., 2015, vol. 7, no. 1, p. 01031.

10. Lisenkov E. A., Klepko V. V. Features of charges transfer in the polyethylene glycol/carbon nanotubes system. J. Nano-Electron. Phys., 2013, vol. 5, no. 3, p. 03052.

11. Suslyaev V. I., Kuznetsov V. L., Zhuravlev V. A., Mazov I. N., Korovin E. Y., Moseenkov S. I., Dorozhkin K. V. An investigation of electromagnetic response of composite polymer materials containing carbon nanostructures within the range of frequencies 10 MHz — 1.1 THz. Russ. Phys. J., 2013, vol. 55, no. 8, pp. 970—976. DOI: 10.1007/s11182-013-9909-7

12. Mazov I. N., Kuznetsov V. L., Krasnikov D. V., Rudina N. A., Romanenko A. I., Anikeeva O. B., Suslyaev V. I., Korovin E. Yu., Zhuravlev V. A. Structure and properties of multiwall carbon nanotubes/polystyrene composites prepared via coagulation precipitation technique. J. Nanotechnology, 2011, vol. 2011, article ID 648324 (7 p.). DOI: 10.1155/2011/648324


Review

For citations:


Kozhitov L.V., Shadrinov A.V., Muratov D.G., Korovin E.Yu., Popkova A.V. Electromagnetic and mechanical properties of nanocomposites polyacrylonitrile/carbon nanotubes. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(3):206-212. https://doi.org/10.17073/1609-3577-2017-3-206-212

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)