Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Determination of the initial guess for the problem of memristor model parameters extraction using machine learning algorithms

https://doi.org/10.17073/1609-3577-2021-2-97-101

Abstract

The focus of this work is on the algorithm of extraction of parameters of the memristor model from the experimentally obtained current-voltage characteristics. The problem of finding the initial guess for this algorithm based on current-voltage characteristic features is stated and solved by means of machine learning algorithms.

About the Authors

E. S. Shamin
Moscow Institute of Physics and Technology (National Research University); Molecular Electronics Research Institute, JSC
Russian Federation

9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141701;

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Evgeniy S. Shamin — Researcher (1), Postgraduate Student (2)



D. A. Zhevnenko
Moscow Institute of Physics and Technology (National Research University); Molecular Electronics Research Institute, JSC
Russian Federation

9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141701;

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Dmitriy A. Zhevnenko



F. P. Meshchaninov
Moscow Institute of Physics and Technology (National Research University); Molecular Electronics Research Institute, JSC
Russian Federation

9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141701;

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Fedor P. Meshchaninov



V. S. Kozhevnikov
Moscow Institute of Physics and Technology (National Research University); Molecular Electronics Research Institute, JSC
Russian Federation

9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141701;

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Vladislav S. Kozhevnikov



E. S. Gornev
Moscow Institute of Physics and Technology (National Research University); Molecular Electronics Research Institute, JSC
Russian Federation

9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141701;

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Evgeniy S. Gornev — Corresponding Member of the Russian Academy of Sciences, Dr.Sci. (Eng.), Professor (1), Deputy Head of Priority Technology Direction — Head of Department (2)



References

1. Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. The missing memristor found. Nature. 2008; 453(7191): 80—83. https://doi.org/10.1038/nature06932

2. Pershin Yu.V., Di Ventra M. On the validity of memristor modeling in the neural network literature. Neural Networks. 2020; 121: 52—56. https://doi.org/10.1016/j.neunet.2019.08.026

3. Kozhevnikov V.S., Gornev E.S., Meshchaninov F.P., Zhevnenko D.A. Analysis of methods of mathematical modeling of memristors. International forum “Microelectronics-2019”. 5th International Scientific Conference “Electronic Component Base and Microelectronic Modules”: Collection of abstracts. Alushta, September 30 — October 5, 2019. Moscow: Technosfera; 2019. P. 556—568. (In Russ.). https://elibrary.ru/pnbmnh

4. Chawa A.M.M., Picos P. A simple quasi-static compact model of bipolar ReRAM memristive devices. IEEE Transactions on Circuits and Systems II: Express Briefs. 2020; 67(2): 390—394. https://doi.org/10.1109/TCSII.2019.2915825

5. Garcia A.A., Reyes L.O. Analysis and parameter extraction of memristive structures based on Strukov’s non-linear model. Journal of Semiconductors. 2018; 39(12): 124009. https://doi.org/10.1088/1674-4926/39/12/124009

6. Yakopcic C., Taha T., Subramanyam G., Pino R., Rogers S. A memristor device model. IEEE Electron Device Letters. 2011; 32(10): 1436—1438. https://doi.org/10.1109/LED.2011.2163292


Review

For citations:


Shamin E.S., Zhevnenko D.A., Meshchaninov F.P., Kozhevnikov V.S., Gornev E.S. Determination of the initial guess for the problem of memristor model parameters extraction using machine learning algorithms. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):97-101. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-97-101

Views: 469


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)