Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Modeling of kinetics of chemical vapor deposition and the basic characteristics of the layers

https://doi.org/10.17073/1609-3577-2021-2-88-96

Abstract

Proposed the molecular-kinetic model of formation of layers from the gas phase, including complex kinetic scheme of stages and equations for calculations of the speeds of heterogeneous and homogeneous growth. The growth rate takes into account the stage of diffusion, adsorption and chemical reaction with the formation on the substrate and in a boundary layer of the main gas, by-products and clusters. Defined indicators of chemical, structural and topological irregularities, as the deviations of the basic characteristics of layers. The characteristics of silicone oxide layers are estimated using examples of deposition by oxidation of monosilane and tetraethoxysilane.

About the Author

V. L. Evdokimov
Molecular Electronics Research Institute, JSC
Russian Federation

6-1 Acad. Valieva Str., Moscow, Zelenograd 124460

Vladimir L. Evdokimov — Researcher



References

1. Krasnikov G.Ya. Design and technological features of submicron MOSFETs. Moscow: Tekhnosfera; 2011. 800 p. (In Russ.)

2. Krasnikov G.Ya., Zaitsev N.A. Physical and technological bases of VLSI quality assurance. In 2 p. Moscow: Mikron-Print; 1999. Рt 1. 226 p. (In Russ.)

3. Kern W., Ban W.S. Chemical vapor deposition of inorganic thin films in thin film processes. In: Thin film processes. USA, NY: Academic Press; 1978: 257—331. https://doi.org/10.1016/B978-0-12-728250-3.50012-X

4. Pierson H.O. Handbook of chemical vapor deposition. USA, NY: Academic Press; NJ: Pennington; 1992. 436 p.

5. Vasilev V.Yu., Repinsky S.M. Chemical vapour deposition of thin-film dielectrics. Russian Chemical Reviews. 2005; 74(5): 413—441. https://doi.org/10.1070/RC2005v074n05ABEH000886

6. Rosenberger F. Flow dinamics and modelling of CVD. Proc. 10th Int. Conf on CVD, Electrochemical Society. USA, NJ: Pennington; 1987: 193–203.

7. Cobianu С., Rovelescu C. A theoretical study of the low-temperature CVD of SiO2 films. Journal of the Electrochemical Society. 1983;130(9): 1888—1893. https://doi.org/10.1149/1.2120118

8. Morosanu C., Segal E. Mechanism of the CVD of Si3N4 films from SiH2Cl2 and NH3 under diffusion controlled conditions. Thin Solid Films. 1982; 91(3): 251—256. https://doi.org/10.1016/0040-6090(82)90114-6

9. Vasilyeva L.L., Drozdov V.N., Repinsky S.M., Svitashev K.K. Deposition of silica films by the oxidaton of silane in oxygen. Thin Solid Films. 1978; 55(2): 221—228. https://doi.org/10.1016/0040-6090(78)90052-4

10. Arora R., Pollard R. A mathemathical model for the coupled reaction kinetics and transport processes in CVD systems. In: CVD-XI: Proc. of the Eleventh Int. Conf. on Chemical Vapor Deposition. USA, NJ: Pennington; 1990: 106—112.

11. Tobin P., Price J., Kempbell L. Gas phase composition in the low pressure CVD of silicon dioxide. Journal of the Electrochemical Society. 1980; 127(10): 2222—2227. https://doi.org/10.1149/1.2129379

12. Shintany A., Suda K., Suzuki M., Maki M., Takami K. SiO2 particulates dispersed in CVD reactor: I. Semi-in situ. Journal of the Electrochemical Society. 1977; 124(11): 1771—1776. https://doi.org/10.1149/1.2133154

13. Evdokimov V.L. Simulation of the process of chemical deposition of layers from the gas phase. Elektronnaya promyshlennost'. 1994; 6: 136. (In Russ.)

14. Evdokimov V.L. Modeling of kinetics of chemical vapor deposition and the basic characteristics of the layers. Electronic Engineering. Series 3 Microelectronics. 2017; 4(168): 42—55. (In Russ.)

15. Evdokimov V.L. Modeling the topological non-uniformity of the layers deposited from the gas phase on a substrate microrelief. Electronic Engineering. Series 3 Microelectronics. 2020; 1(177): 47—53. (In Russ.)


Review

For citations:


Evdokimov V.L. Modeling of kinetics of chemical vapor deposition and the basic characteristics of the layers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):88-96. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-88-96

Views: 457


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)