Nanocomposites FeCoNi/C based on polyvinyl alcohol: synthesis and electromagnetic properties
https://doi.org/10.17073/1609-3577-2020-4-260-269
EDN: WVYIUE
Abstract
Triple FeCoNi nanoparticles distributed and stabilized in the carbon matrix of FeCoNi/C metal-carbon nanocomposites were synthesized. The synthesis of nanocomposites was carried out by controlled IR pyrolysis of precursors of the "polymer-metal nitrates" type, obtained by joint dissolution of the components with subsequent removal of the solvent. The effect of the synthesis temperature on the structure, composition, and electromagnetic properties of nanocomposites has been studied. It was shown by XRD that the formation of ternary FeCoNi nanoparticles occurs through the dissolution of Fe in the nanoparticles of the NiCo solid solution. With an increase in the synthesis temperature, the size of metal nanoparticles increases, which is determined by the processes of their agglomeration and coalescence during matrix rearrangement. Also, depending on the synthesis temperature, nanoparticles of a ternary alloy with different compositions can be formed, and the ratio of metals specified in the precursor is achieved at 700 °C. By Raman spectroscopy was shown that, with an increase in the synthesis temperature, the degree of crystallinity of the carbon matrix of nanocomposites increases, and graphene structures consisting of several layers can be formed. The frequency dependences of the relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3–13 GHz were studied. It is shown that an increase in the synthesis temperature causes a significant increase in both dielectric and magnetic losses (~ 2 times). The former are associated with the formation of a complex nanostructure of the carbon matrix of the nanocomposite, while the latter are determined by an increase in the size of nanoparticles and a shift of the EFMR frequency to the low-frequency region. Reflection loss (RL) calculations were performed according to the standard procedure based on experimental data of the frequency dependences of the complex magnetic and dielectric permittivity. It was shown that control of the frequency range and absorption value of electromagnetic waves (from 50 to 94%) can be carried out by changing the temperature of synthesis of nanocomposites.
Keywords
About the Authors
D. G. MuratovRussian Federation
29 Leninsky Prospekt, Moscow 119991;
4 Leninsky Prospekt, Moscow 119049
Dmitry G. Muratov — Cand. Sci. (Eng.), Leading Researcher (1), Assistant Professor (2)
L. V. Kozhitov
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Lev V. Kozhitov — Dr. Sci (Eng.), Professor
T. M. Kazaryan
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Tigran M. Kazaryan — Postgraduate Student
A. A. Vasil'ev
Russian Federation
29 Leninsky Prospekt, Moscow 119991;
4 Leninsky Prospekt, Moscow 119049
Andrey A. Vasil'ev — Junior Researcher (1), Assistant Professor (2)
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk, Moscow Region 142103
Alena V. Popkova — Cand. Sci. (Eng.), Senior Researcher
E. Yu. Korovin
Russian Federation
36 Prospekt Lenina, Tomsk 634050
Evgeniy Yu. Korovin — Cand. Sci. (Phys.-Math.), Department of Radioelectronics, Faculty of Radiophysics
References
1. Xu Y. H., Bai J., Wang J. P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007, vol. 311, iss. 1, pp. 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174
2. Khadzhiev S. N., Kulikova M. V., Ivantsov M. I., Zemtsov L. M., Karpacheva G. P., Muratov D. G., Bondarenko G. N., Oknina N. V. Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016. vol. 56, pp. 522—528. DOI: 10.1134/S0965544116060049
3. Efimov M. N., Mironova E. Yu., Pavlov A. A., Vasilev A. A., Muratov D. G., Dzidziguri E. L., Yaroslavtsev A. B., Karpacheva G. P. Novel polyacrylonitrile-based C/Co-Ru metal-carbon nanocomposites as effective catalysts for ethanol steam reforming. International Journal of Nanoscience. 2020, vol. 19, no. 04, 1950031. DOI: 10.1142/S0219581X19500315
4. Gubin S. P., Spichkin Y. I., Yurkov G. Yu., Tishin A. M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002, vol. 47, pp. S32—S67.
5. Lu An-H., Salabas E. L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007, vol. 46, no. 8, pp. 1222—1244. DOI: 10.1002/anie.200602866
6. Afghahi S. S., Shokuhfar. A. S. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-hell nanostructure. Journal of Magnetism and Magnetic Materials. 2014, vol. 370, pp. 37—44. DOI: 10.1016/J.JMMM.2014.06.040
7. Liu X. G., Ou Z. Q., Geng D. Y., Han Z., Jiang J. J., Liu W., Zhang Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010, vol. 48, iss. 3, pp. 891—897. DOI: 10.1016/j.carbon.2009.11.011
8. Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Composites Science and Technology. 2012, vol. 72, iss. 13, pp. 1632—1636. DOI: 10.1016/J.COMPSCITECH.2012.06.022
9. Xie Z., Geng D., Liu X., Ma S., Zhang Z. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules. Journal of Materials Science and Technology. 2011, vol. 27, iss. 7, pp. 607—614. DOI: 10.1016/S1005-0302(11)60115-1
10. Ibrahim E. M. M., Hampel S., Wolter A. U. B., Kath M., El-Gendy A. A., Klingeler R., Täschner C., Khavrus V. O., Gemming T., Leonhardt A., Büchner B. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. The Journal of Physical Chemistry C. 2012, vol. 116, no. 42, pp. 22509—22517. DOI: 10.1021/JP304236X
11. Yang Y., Qi S., Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization. Journal of Alloys and Compound. 2012, vol. 520, pp. 114—121. DOI: 10.1016/j.jallcom.2011.12.136
12. Lu B., Dong X. L., Huang H., Zhang X. F., Zhu X. G., Lei J. P., Sun J. P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. Journal of Magnetism and Magnetic Materials. 2008, vol. 320, iss. 6, pp. 1106—1111. DOI: 10.1016/J.JMMM.2007.10.030
13. Wang B., Zhang J., Wang T., Qiao L., Li F. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. Journal of Alloys and Compounds. 2013, vol. 567, pp. 21—25. DOI: 10.1016/J.JALLCOM.2013.03.028
14. Fan Y., Yang H., Liu X., Zhu H., Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite. Journal of Alloys and Compounds. 2008, vol. 461, iss. 1–2, pp. 490—494. DOI: 10.1016/J.JALLCOM.2007.07.034
15. Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Journal of Materials Science and Engineering: B. 2013, vol. 178, iss. 1, pp. 1—9. DOI: 10.1016/j.mseb.2012.06.005
16. Muratov D. G., Kozhitov L. V., Korovushkin V. V., Korovin E. Y., Popkova A. V., Novotortsev V. M. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles. Russian Physics Journal. 2019, vol. 61, no. 10, pp. 1788—1797. DOI: 10.1007/s11182-019-01602-5
17. Muratov D. G., Kozhitov L. V., Karpenkov D. Yu., Yakushko E. V., Korovin E. Yu., Vasil’ev A. V., Popkova A. V., Kazaryan T. M., Shadrinov A. V. Synthesis and magnetic properties of Fe–Co–Ni/С nanocomposites. Russian Physics Journal. 2018, vol. 60, no. 11. pp. 1924—1930. DOI: 10.1007/s11182-018-1304-y
18. Kozhitov L. V., Muratov D. G., Kostishin V. G., Suslyaev V. I., Korovin E. Yu., Popkova A. V. FeCo/C nanocomposites: synthesis, magnetic and electromagnetic properties. Russian Journal of Inorganic Chemistry. 2017, vol. 62, no. 11. pp. 1499—1507. DOI: 10.1134/S0036023617110110
19. Vasilev A. A., Efimov M. N., Bondarenko G. N., Muratov D. G., Dzidziguri E. L., Ivantsov M. I., Kulikova M. V., Karpacheva G. P. Fe—Co alloy nanoparticles supported on IR pyrolyzed chitosan as catalyst for Fischer-Tropsch synthesis. Chemical Physics Letters. 2019, vol. 730, pp. 8—13. https://doi.org/10.1016/j.cplett.2019.05.034
20. Muratov D. G., Vasilev A. A., Efimov M. N., Karpacheva G. P., Dzidziguri E. L., Chernavskiy P. A. Metal-carbon nanocomposites FeNi/C: production, phase composition, magnetic properties. Inorganic Materials: Applied Research. 2019, vol. 10, no. 3, pp. 666—672. DOI: 10.1134/S2075113319030298
21. Vasilev A. A., Dzidziguri E. L., Muratov D. G., Zhilyaeva N. A., Efimov M. N., Karpacheva G. P. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol. IOP Conference Series: Materials Science and Engineering. 2018, vol. 347, pp. 012011. DOI: 10.1088/1757-899X/347/1/012011
22. Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007, vol. 143, no. 1–2, pp. 47—57. DOI: 10.1016/j.ssc.2007.03.052
23. Ferrari A. C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B. 2001, vol. 64, no. 7, pp. 0754141—07541413. DOI: 10.1103/PhysRevB.64.075414
Review
For citations:
Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil'ev A.A., Popkova A.V., Korovin E.Yu. Nanocomposites FeCoNi/C based on polyvinyl alcohol: synthesis and electromagnetic properties. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(4):260-269. (In Russ.) https://doi.org/10.17073/1609-3577-2020-4-260-269. EDN: WVYIUE