Dependence of the dielectric properties of barium titanate ceramics and a composite based on it on the sintering temperature
https://doi.org/10.17073/1609-3577-2021-1-40-47
Abstract
In this paper, we compare the structure and dielectric properties of the samples of barium titanate ceramics that have been sintered at temperatures of 1100, 1150, 1200, 1250 and 1350 °C and dielectric characteristics of the samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%). It is shown that only samples sintered at the temperature of 1250 and 1350 °C have polarization sufficient for the existence of the piezoelectric effect. For the same samples, the pyroelectric coefficient and reversal polarization significantly exceed those for samples sintered at lower temperatures. Analysis of the samples structure confirmed the dependence of the dielectric properties of the barium titanate ceramics on the grain size and, as a consequence, on the sintering temperature. Based on the studies carried out, the optimal temperature (1250 °С) for obtaining composite samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%) was selected. The temperature dependence of the dielectric constant for the composite samples based on barium ferrite — barium titanate with a sintering temperature of 1250 °C is similar to the dependence for the BaTiO3 ceramic samples sintered at 1350 °C. At room temperatures, the permittivity of the composite samples is also significantly higher than that of the barium titanate ceramic samples obtained at the same sintering temperatures. The addition of barium ferrite to the barium titanate not only increased the permittivity of the composite, but also led to a diffusing of the ferroelectric phase transition and a shift in the temperature of the maximum of the dielectric constant by 10 degrees towards high temperatures.
Keywords
About the Authors
O. V. MalyshkinaRussian Federation
33 Zhelyabova Str., Tver 170100
Olga V. Malyshkina: Dr. Sci. (Phys.-Math.), Full Professor, Head of the Department of Dissertation Councils and Doctorate Studies, Scientific Research Department
A. I. Ivanova
Russian Federation
33 Zhelyabova Str., Tver 170100
Alexandra I. Ivanova: Cand. Sci. (Phys.-Math.), Assistant Professor of the Applied Physic Department
Gr. S. Shishkov
Russian Federation
33 Zhelyabova Str., Tver 170100
Gregory S. Shishkov: Postgraduate Student
A. A. Martyanov
Russian Federation
22 Zhelyabova Str., Tver 170100
Andrey A. Martyanov: Learner
References
1. Bataev A. A. Kompozitsionnye materialy [Composite materials. Moscow: Logos, 2006, 397 p. (In Russ.)
2. Graschenkov D. V., Chursova L. V. Development strategics of composite and functional materials. Aviacionnye Materialy and Tehnologii. 2012, pp. 231—242. (In Russ.)
3. Titov S. V., Titov V. V., Shabanov V. M., Aleshin V. A., Shilkina L. A., Reznichenko L. A. Multifractal studies of active ceramic composite materials. Design of Composite Materials. 2014, no. 3, pp. 46—52. (In Russ.)
4. Ortega N., Kumar A., Scott J. F., Katiyar R. S. Multifunctional magnetoelectric materials for device applications. J. Phys.: Condens. Matter, 2015, vol. 27, no. 50, p. 504002 (24pp.). DOI: 10.1088/0953-8984/27/50/504002
5. Petrov V. M. Magnetoelectric properties of the ferrite-piezoelectric composite materials. Diss. … Dr. Sci. (Eng.). Velikiy Novgorod, 2004, 186 p. (In Russ.)
6. Segnetomagnitnye veshchestva [Ferro-magnetic materials]. Eds. Yu. N. Venevtcev, V. N. Lyubimov. Moscow: Nauka, 1990, 184 p. (In Russ.)
7. Kallaev S. N., Omarov Z. M., Bakmaev A. G., Mitarov R. G., Reznichenko L., Bormanis K. Thermal properties of multiferroic Bi1-xEuxFeO3 (х = 0—0.40) ceramics. J. Alloys and Compounds, 2017, vol. 695, pp. 3044—3047. DOI: 10.1016/j.jallcom.2016.11.347
8. Kallaev S. N., Omarov Z. M., Mitarov R. G., Sadykov S. A., Khasbulatov S. V., Reznichenko L., Bormanis K., Kundzinish M. Heat capacity and thermal conductivity of multiferroics Bi1-xPrxFeO3. Integrated Ferroelectrics, 2019, vol. 196, no. 1, pp. 120—126. DOI: 10.1080/10584587.2019.1591973
9. Karpenkov D. Y., Bogomolov A. A., Solnyshkin A. V., Karpenkov A. Y., Shevyakov V. I., Belov A. N. Multilayered ceramic heterostructures of lead zirconate titanate and nickel-zinc ferrite for magnetoelectric sensor elements. Sensors and Actuators A: Physical, 2017, vol. 266. pp. 242—246. DOI: 10.1016/j.sna.2017.09.011
10. Grechishkin R. M., Kaplunov I. A., Ilyashenko S. E., Malyshkina O. V., Mamkina N. O., Lebedev G. A., Zalyotov A. B. Magnetoelectric effect in metglas/piezoelectric macrofiber composites. Ferroelectrics, 2011, vol. 424, no. 1, pp. 78—85. DOI: 10.1080/00150193.2011.623939
11. Makarova L. A., Alekhina Yu. A., Perov N. S., Omelyanchik A. S., Rodionova V. V., Malyshkina O. V. Elastically coupled ferromagnetic and ferroelectric microparticles: new multiferroic materials based on polymer, NdFeB and PZT particles. J. Magn. Magn. Mater., 2019, vol. 470, pp. 89—92. DOI: 10.1016/j.jmmm.2017.11.121
12. Kleemann W. Multiferroic and magnetoelectric nanocomposites for data processing. J. Phys. D: Appl. Phys., 2017, vol. 50, no. 22, p. 223001. DOI: 10.1088/1361-6463/aa6c04
13. Magnetic Oxides and Composites. Vol. 31. Eds. R. B. Jotania, S. H. Mahmood. Millersville (PA, USA): Materials Research Foundations, 2018, 274 p.
14. Malyshkina O. V., Shishkov G. S., Ivanova A. I., Malyshkin Y. A., Alexina Y. A. Multiferroic ceramics based on barium titanate and barium ferrite. Ferroelectrics, 2020, vol. 569, no. 1, pp. 215—221. DOI: 10.1080/00150193.2020.1822679
15. Ivanova A. I., Malyshkina O. V., Karpenkov A. Yu., Shishkov G. S. Microstructure of composite materials based on barium titanate and barium ferrite. Ferroelectrics, 2020, vol. 569, no. 1, pp. 209—214. DOI: 10.1080/00150193.2020.1822678
16. Okadzaki K. Tekhnologiya keramicheskikh diehlektrikov [Ceramic dielectric technology]. Moscow: Ehnergiya, 1976, 336 p. (In Russ.)
17. Patent 0002706275 (RF). A method of producing ceramics based on barium titanate. A. D. Smirnov, A. A. Holodkova, M. N. Danchevskaya, S. G. Ponomaev, A. A. Vasin, V. V. Rybalchenko, Yu. D. Ivakin, 2019. (In Russ.)
18. Patent 2646062 (RF). A method of manufacturing barium titanate (BaTiO3) for multilayer ceramic capacitors with a dielectric sintering temperature of not more than 1130 °С. K.D. Gasymov, I.K Ezovskij, 2017
19. Sloccari G. Phase equilibrium in the subsystem BaO∙Fe2O3 — BaO∙6Fe2O3. J. Amer. Ceram. Soc. 1973, vol. 56, no. 9, pp. 489—490. DOI: 10.1111/j.1151-2916.1973.tb12531.x
20. Golovnin V. A., Kaplunov I. A., Malyshkina O. V., Ped'ko B. B., Movchikova A. A. Fizicheskie osnovy, metody issledovaniya i prakticheskoe primenenie p'ezomaterialov [Physical foundations, research methods and practical application of piezomaterials]. Moscow: Tekhnosfera, 2016. 272 p. (In Russ.)
21. Industry standard. Piezoceramic materials. OST II 0444-87 (In Russ.)
22. Malyshkina O. V., Ivanova A. I., Karelina K. S., Petrov R. A. Structure features of barium and calcium titanate ceramics. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2020, vol. 12, pp. 652—661. (In Russ.). DOI: 10.26456/pcascnn/2020.12.652
23. McNeal M. P., Jang S.-J., Newnham R. E. The effect of grain and particle size on the microwave properties of barium titanate BaTiO3. J. Appl. Phys., 1998, vol. 83, no 6, pp. 3288—3297. DOI: 10.1063/1.367097
Review
For citations:
Malyshkina O.V., Ivanova A.I., Shishkov G.S., Martyanov A.A. Dependence of the dielectric properties of barium titanate ceramics and a composite based on it on the sintering temperature. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1):40-47. (In Russ.) https://doi.org/10.17073/1609-3577-2021-1-40-47