Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Properties of high-temperature poling ferroelectric crystals congruent solid solution LiNb0.5Ta0.5O3

https://doi.org/10.17073/1609-3577-2021-1-34-39

Abstract

Lithium niobate and lithium tantalate are among the most important and most widely used materials in acousto-optics and acoustoelectronics. These materials have high values of piezoelectric constants, which makes it possible to use these materials as actuators; however, their use is limited by the thermal instability of a lithium niobate crystal and the low Curie temperature (TC) of a lithium tantalate crystal. LiNb(1-x)TaxO3 crystals have to overcome the aforementioned limitations of individual compounds.

Crystals LiNb0.5Ta0.5O3 were grown by the Czochralski method, of good quality. Comparative studies of the features of high-temperature single domainization of LiNb0.5Ta0.5O3 crystals have been carried out. The main differences in the technological regimes for single-domainization of congruent LiNb0.5Ta0.5O3 crystals from congruent LiNbO3 crystals are demonstrated. The parameters of high-temperature electrodiffusion processing LiNb0.5Ta0.5O3 crystals are presented, which make it possible to obtain single-domain crystals for further study of their physical properties.

About the Authors

A. A. Mololkin
Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences; JSC Fomos-Materials
Russian Federation

16 Buzheninova Str., Moscow 107023

6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432

Anatolii A. Mololkin: Deputy Head of Production JSC Fomos-Materials



D. V. Roshchupkin
Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences
Russian Federation

6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432

Dmitry V. Roshchupkin: Dr. Sci. (Phys.-Math.), Director of IPTM RAS



E. E. Emelin
Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences
Russian Federation

6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432

Eugenii V. Emelin: Researcher



R. R. Fahrtdinov
Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences
Russian Federation

6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432

Rashid R. Fahrtdinov: Researcher 



References

1. Kaino G. Akusticheskie volny [Acoustic waves]. Moscow: Mir, 1990. 652 p. (In Russ.)

2. Yariv A, P. Yuh. Opticheskie volny v kristallah [Optical waves in crystals]. Moscow: Mir, 1987. 616 p. (In Russ.)

3. Campbell C. Surface acoustic wave devices and their signal processing applications. Academic Press, 1989. 470 p. DOI: 10.1016/B978-0-12-157345-4.X5001-2

4. Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Jpn. J. Appl. Phys., 1993, vol. 32, no. 5B, pp. 2415—2417. DOI: 10.1143/JJAP.32.2415

5. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics, 1989, vol. 93, no. 1, pp. 211—216. DOI: 10.1080/00150198908017348

6. Ueda M., Sawada H., Tanaka A., Wakatsuki N. Piezoelectric actuator using a LiNbO3 bimorph for an optical switch. IEEE Symposium on Ultrasonics, 1990, pp. 1183—1186. DOI: 10.1109/ULTSYM.1990.171548

7. Fukuda T., Hirano H. Solid-solution LiTaxNb1-xO3 single crystal growth by Czochralski and edge-defined film-fed growth technique. J. Crystal Growth, 1976, vol. 35, no. 2, pp. 127—132. DOI: 10.1016/0022-0248(76)90159-7

8. Shimura F., Fujino Y. Crystal growth and fundamental properties of LiNb1-yTayO3. J. Crystal Growth, 1977, vol. 38, no. 3, pp. 293—302. DOI: 10.1016/0022-0248(77)90349-9

9. Bartasyte A., Glazer A. M., Wondre F., Prabhakaran D., Thomas P. A., Huband S., Keeble D. S., Margueron S. Growth of LiNb1-xTaxO3 solid solution crystals. Materials Chemistry and Physics, 2012, vol. 134, pp. 728—735. DOI: 10.1016/j.matchemphys.2012.03.060

10. Roshchupkin D., Emelin E., Plotitcyna O., Fahrtdinov R., Irzhak D., Karandashev V., Orlova T., Targonskaya N., Sakharov S., Mololkin A., Redkin B., Fritze H., Suhak Y., Kovalev D., Vadilonga S., Ortega L., Leitenberger W. Single crystals of ferroelectric lithium niobate–tantalate LiNb(1-x)TaxO3 solid solutions for high-temperature sensor and actuator applications. Acta Cryst., 2020, vol. B76, pp. 1071—1076. DOI: 10.1107/S2052520620014390

11. Kuz'minov Yu. S. Niobat i tantalat litiya: materialy dlya nelineinoi optiki [Lithium niobate and tantalate: materials for nonlinear optics]. Moscow: Nauka, 1975. 52 p. (In Russ.)

12. Kuz'minov Yu. S. Elektroopticheskiy i nelineyno opticheskiy kristall niobata litiya [Electro-optical and nonlinear optical crystal of lithium niobate]. Moscow: Nauka, 1987. 262 p. (In Russ.)

13. Blistanov A. A. Kristally kvantovoy i nelineynoy optiki [Crystals of quantum and nonlinear optics]. Moscow: MISiS, 2000. 197 p. (In Russ.)

14. Grabmaier B. C., Otto F. Growth and investigation of MgO-doped LiNbO3. J. Crystal Growth, 1986, vol. 79, no. 1–3, pt 2, pp. 682—688. DOI: 10.1016/0022-0248(86)90537-3

15. Palatnikov M. N., Sidorov N. V., Makarova O. V., Birjukova I. V. Features of the postgrowth thermal and electrothermal treatment of nominally pure and heavily doped lithium-niobate crystals. Bulletin of the Russian Academy of Sciences: Physics, 2018, vol. 82, no, 3, pp. 314—316. DOI: 10.3103/S1062873818030176


Review

For citations:


Mololkin A.A., Roshchupkin D.V., Emelin E.E., Fahrtdinov R.R. Properties of high-temperature poling ferroelectric crystals congruent solid solution LiNb0.5Ta0.5O3. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1):34-39. (In Russ.) https://doi.org/10.17073/1609-3577-2021-1-34-39

Views: 847


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)