Simulation of TiN/HfO2/Pt memristor I–V curve for different conductive filament thickness
https://doi.org/10.17073/1609-3577-2021-2-79-87
Abstract
The operation of the TiN/HfO2/Pt bipolar memristor has been simulated by the finite elements method using the Maxwell steady state equations as a mathematical basis. The simulation provided knowledge of the effect of conductive filament thickness on the shape of the I-V curve. The conductive filament has been considered as the highly conductive Hf ion enriched HfOx phase (x < 2) whose structure is similar to a Magneli phase. In this work a mechanism has been developed describing the formation, growth and dissolution of the HfOx phase in bipolar mode of memristor operation which provides for oxygen vacancy flux control. The conductive filament has a cylindrical shape with the radius varying within 5–10 nm. An increase in the thickness of the conductive filament leads to an increase in the area of the hysteresis loop of the I-V curve due to an increase in the energy output during memristor operation. A model has been developed which allows quantitative calculations and hence can be used for the design of bipolar memristors and assessment of memristor heat loss during operation.
About the Authors
A. N. AleshinRussian Federation
7, Bd 5, Nagorny Proezd, Moscow 117105
Andrey N. Aleshin — Dr. Sci. (Phys.-Math.), Chief Researcher
N. V. Zenchenko
Russian Federation
7, Bd 5, Nagorny Proezd, Moscow 117105
Nikolay V. Zenchenko — Researcher
O. A. Ruban
Russian Federation
7, Bd 5, Nagorny Proezd, Moscow 117105
Oleg A. Ruban — Senior Researcher
References
1. Bersuker G., Gilmer D.C., Veksler D., Kirsch P., Vandelli L., Padovani A., Larcher L., McKenna K., Shluger A., Iglesias V., Porti M., Nafría M. Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys., 2011; 110(12): 124518. https://doi.org/10.1063/1.3671565
2. Kwon D.-H., Kim K.M., Jang J.H., Jeon J.M., Lee M.H., Kim G.H., Li X.-S., Park G.-S., Lee B., Han S., Kim M., Hwang C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010; 5(2): 148—153. https://doi.org/10.1038/NNANO.2009.456
3. Privetera S., Bersuker G., Butcher B., Kalantarian A., Lombardo S., Bongiorno C., Geer R., Gilmer D.C., Kirsch P.D. Microscopy study of the conductive filament in HfO2 resistive switching memory devices. Microelectronic Engineering, 2013; 109: 75—78. https://doi.org/10.1016/j.mee.2013.03.145
4. Miao F., Strachan J. P., Yang J.J. Zhang M.-X., Goldfarb I., Torrezan A.C., Eschbach P., Kelley R.D., Medeiros-Ribeiro G., Williams R.S. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Advanced Materials, 2011; 23(47): 5633—5640. https://doi.org/10.1002/adma.201103379
5. Bartholomew R.F., Frankl D.R. Electrical properties of some titanium oxides. Phys. Rev., 1969; 187(3): 828—833.https://doi.org/10.1103/PhysRev.187.828
6. Lakkis S., Schlenker C., Chakraverty B.K., Buder R., Marezio M. Metal-insulator transitions in Ti4O7 single crystals: Crystal characterization, specific heat, and electron paramagnetic resonance. Phys. Rev. B., 1976; 14(4): 1429—1440. https://doi.org/10.1103/PhysRevB.14.1429
7. Münstermann R., Yang J.J., Strachan J.P., Medeiros-Ribeiro G., Dittmann R., Waser R. Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys. Status Solidi RRL, 2010; 4(1-2): 16—18. https://doi.org/10.1002/pssr.200903347
8. Kim K.M., Jeong D.S., Hwang C.S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011; 22(25): 254002. https://doi.org/10.1088/0957-4484/22/25/254002
9. Wouters D.J., Zhang L., Fantini A., Degraeve R., Goux L., Chen Y.-Y., Govorenau B., Kar G.S., Groeseneken G.V., Jurczak M. Analysis of complementary RRAM switching. IEEE Electron Device Letters, 2012; 33(8): 1186—1188. https://doi.org/10.1109/LED.2012.2198789
10. Goux L., Chen Y.-Y., L. Pantisano L., Wang X.-P., Groeseneken G., Jurczak M., Wouters D.I. On the gradual unipolar and bipolar resistive switching of TiNHfO2Pt memory systems. Electrochemical and Solid-State Letters, 2010; 13(6): G54—G56. https://doi.org/10.1149/1.3373529
11. Nardi F., Larentis S., Balatti S., Gilmer D.C., Ielmini D. Resistive switching by voltage-driven ion migration in bipolar RRAM — part I: experimental study. IEEE Transactions on Electron Devices, 2012; 59(9): 2461—2467. https://doi.org/10.1109/TED.2012.2202319
12. Egorov K.V., Kirtaev R.V., Lebedinskii Yu.Yu., Markeev A.M., Matveyev Yu.A., Orlov O.M., Zablotskiy A.V., Zenkevich A.V. Complementary and bipolar regimes of resistive switching in TiN/HfO2/TiN stacks grown by atomic-layer deposition. Phys. Status Solidi A, 2015; 212(4): 809—816. https://doi.org/10.1002/pssa.201431674
13. Voronovskii V.A., Aliev V.S., Gerasimova A.K., Islamov D.R. Conduction mechanisms of TaN/HfOx/Ni memristors. Materials Research Express, 2019; 6(7): 076411. https://doi.org/10.1088/2053-1591/ab11aa
14. Park G.-S., Li X.-S., Kim D.-C., Jung R-J., Lee M.-J., Seo S. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett., 2007; 91(22): 222103. https://doi.org/10.1063/1.2813617
15. Shurina E.P., Velikaya M.Yu., Fedoruk M.P. On algorithms for the solution of Maxwell equations on non-structured grids. Computational Technologies, 2000; 5(6): 99—116. (In Russ.)
16. Fóti G., Jaccoud A., Falgairette C., Comninellis C. Charge storage at the Pt/YSZ interface. J. Electroceram., 2009; 23: 175—179. https://doi.org/10.1007/s10832-007-9352-7
17. Jeong D.S., Schroeder H., Breuer U., Waser R. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys., 2008; 104(12): 123716. https://doi.org/10.1063/1.3043879
18. Kröger F.A. The chemistry of imperfect crystals. North-Holland Publ. Co, Amsterdam, 1964.
19. Liborio L., Harrison N. Thermodynamics of oxygen defective Magnéli phases in rutile: a first-principles study. Phys. Rev. B, 2008; 77(10): 104104. https://doi.org/10.1103/PhysRevB.77.104104
20. Bokshtein B.S., Mendeleev M.I. Kratkii kurs fizicheskoi khimii [Short course of physical chemistry]. Moscow: CheRo, 2001, 232 p. (In Russ.)
21. Noman M., Jiang W., Salvador P.A., Skowronski M., Bain J.A. Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A, 2011; 102: 877—883. https://doi.org/10.1007/s00339-011-6270-y
22. Strukov D.B., Williams R.S. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A, 2009; 94: 515—519. https://doi.org/10.1007/s00339-008-4975-3
23. CRC handbook of chemistry and physics. Ed. by D.R. Lide. Boca Raton: Taylor and Francis Group, 2008, 2475 p.
24. Yaws C.L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston: Gulf Professional Publishing, 2015, 832 p.
Review
For citations:
Aleshin A.N., Zenchenko N.V., Ruban O.A. Simulation of TiN/HfO2/Pt memristor I–V curve for different conductive filament thickness. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):79-87. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-79-87