Influence of PECVD features of SiNx deposition processes on electrical parameters of SiNx/AlGaN/GaN structures
https://doi.org/10.17073/1609-3577-2021-2-107-118
Abstract
In this work, we studied the influence of the processes of plasma-chemical deposition of SiNx films on the electrical parameters of the dielectric/AlGaN/GaN structure. The effect of the composition of the formed films, the effect of additional surface treatment of heterostructures in nitrogen plasma prior to dielectric deposition, as well as the effect of the RF bias supply during this treatment on the C-V and I-V characteristics of the SiNx/AlGaN/GaN structures were analyzed. It was found that for films with a ratio of nitrogen and silicon concentrations of 60 % and 40 %, as well as with an increased oxygen content, a decrease in the value of a fixed positive charge in these structures is characteristic, but the appearance of current pulsations is observed on the I-V characteristics of the structures. It was revealed how the modes of the plasma chemistry process affect such parameters of oscillations as the period, amplitude, length of the section of the I-V characteristic, where oscillations are observed. A possible explanation of the reasons for the appearance of characteristic pulsations is proposed. It has been established that the additional action of nitrogen plasma on the surface of the heterostructure before the monosilane is introduced into the chamber leads to a change in the magnitude and sign of the fixed charge and to a decrease in the concentration of free carriers in the channel of a two-dimensional gas of SiNx/AlGaN/GaN heterostructures. It is shown experimentally how the technological features of the deposition and surface preparation processes can affect the electrical parameters of the formed heterostructures.
About the Authors
K. L. ЕnisherlovaRussian Federation
27 Okruzhnoy proezd, Moscow 105187
Kira L. Еnisherlova — Dr. Sci. (Eng.), Head of Laboratory
L. A. Seidman
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
Lev A. Seidman — Cand. Sci. (Eng.), Leading Researcher
E. T. Temper
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
Ella M. Temper — Senior Researcher
Yu. A. Kontsevoy
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
Yuliy A. Kontsevoy — Dr. Sci. (Eng.), Chief Researcher, Professor
References
1. Chevtchenko S.A., Reshchikov M.A., Fan Q., Ni X., Moon Y.T., Baski A.A., Morkoç H. Study of SiNx and SiO2 passivation of GaN surfaces. J. Appl. Phys., 2007; 101(11): 113709. https://doi.org/10.1063/1.2740324
2. Liu Z.H., Ng G.I., Zhou H., Arulkumaran S., Maung Y.K.T. Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation. Appl. Phys. Lett., 2011; 98(11): 113506. https://doi.org/10.1063/1.3567927
3. Jayanta Joglekar S. Surface and mechanical stress effects in AlGaN/GaN high electron mobility transistors. Thesis: Ph.D. Massachusetts Institute of Technology, 2017, 161 p. https://dspace.mit.edu/handle/1721.1/111325
4. Osipov K.Y., Ostermay I., Brunner F., Würfl J., Tränkle G. Effect of external mechanical stress on DC performance and reliability of integrated E/D GaN HEMTs. IEEE Trans. Semicond. Manuf., 2018; 31(4): 419—425. https://doi.org/10.1109/TSM.2018.2865106
5. Novak A.V., Novak V.R., Dedkova A.A., Gusev E.E. Dependence of mechanical stress in silicon nitride films on conditions of plasma-enhanced chemical vapor deposition. Proc. of universities. Electronics, 2017; 22(2): 138—146. (In Russ.). https://doi.org/10.24151/1561-5405-2017-22-2-138-146
6. Dergez D., Bittner A., Schalko J., Schmid U., Low-stress and long-term stable a-SiNx: H films deposited by ICP-PECVD. Procedia Engineering, 2014; 87: 100—103. https://doi.org/10.1016/j.proeng.2014.11.392
7. Dinara S.M., Jana S.K., Ghosh S., Mukhopadhyay P., Kumar R., Chakraborty A., Biswas D., Bhattacharya S. Enhancement of two dimensional electron gas concentrations due to Si3N4 passivation on Al0.3Ga0.7N/GaN heterostructure: strain and interface capacitance analysis. AIP Advances, 2015; 5(4): 047136—047136-11. https://doi.org/10.1063/1.4919098
8. Seidman L.A., Enisherlova K.L., Koncevoy U.A., Minnebaev S.V., Jilnicov I.A. SiNx films obtained by the PECVD metod as passivation of AlGaN/GaN HEMT. Electronic engineering. Series 2. Semiconductor devices, 2020; (3 (258)): 22—33. (In Russ.). http://j.pulsarnpp.ru/images/journal/issues/2020/3_258/Seidman_str22.pdf
9. Enisherlova K.L., Temper E.M., Kolkovsky Y.V., Medvedev B.K., Kapilin S.A. The ALD films of Al2O3, SiNx, and SiON as passivation coatings in AlGaN/GaN HEMT. Russ. Microelectron., 2020; 49(8): 603—611. https://doi.org/10.1134/S106373972008003X
10. Berlin E.V., Grigoriev V.Yu., Seidman L.A. Induktivnye istochniki vysokoplotnoi plazmy i ikh tekhnologicheskie primeneniya [Inductive sources of high-density plasma and their technological applications]. Moscow: Tekhnosfera, 2018, 462 p. (In Russ.)
11. Gweon G.H., Lim J.H., Hong S.P.,Yeom G.Y. Effect of DC bias voltage on the characteristics of low temperature silicon—nitride films deposited by internal linear antenna inductively coupled plasma source. Jpn. J. Appl. Phys., 2010; 49(5R): 056505. https://doi.org/10.1143/JJAP.49.056505
12. Kuiwei Geng , Ditao Chen, Quanbin Zhou, Hong Wang. AlGaN/GaN MIS-HEMT with PECVD SiNx, SiON, SiO2 as gate dielectric and passivation layer. Electronics, 2018; 7(12): 416. https://doi.org/10.3390/electronics7120416
13. Romero M.F., Jimenez A., Miguel-Sánchez J., Braña A.F., González-Posada F., Cuerdo R., Calle F., Muñoz E. Effects of N2 plasma pretreatment on the SiN passivation of AlGaN/GaN HEMT. IEEE Electron Device Lett., 2008; 29(3): 209—211. https://doi.org/10.1109/LED.2008.915568
14. Meunier R. Optimization of the elaboration of insulating layers for the gate structures and the passivation of MIS-HEMT transistors on GaN: Dr. Diss. Université Paul Sabatier-Toulouse III, 2016, 154 p. https://hal.laas.fr/tel-01376016
15. Pletschen W., Kirste L., Cimalla V., Müller S., Himmerlich M., Krischok S., Ambacher O. Changes of electronic properties of AlGaN/GaN HEMTs by surface treatment. MRS Online Proceedings Library (OPL), 2014, 1736. https://doi.org/10.1557/opl.2014.937
16. Antonova I.V., Mansurov V.G., Zhuravlev K.S., Polyakov V.I., Rukavishnikov A.I. Deep levels and electron transport in AlGaN/GaN heterostructures. Semiconductors, 2008; 42(1): 52—58. https://doi.org/10.1007/s11453-008-1007-z
17. Fu C., Lin Z., Cui P., Lv Y., Zhou Y., Dai G., Luan C., Liu H., Cheng A. The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation. Appl. Phys. A, 2018; 124(4): 1—10. https://doi.org/10.1007/s00339-018-1702-6
18. Liu S.C., Huang C.K., Chang C.H., Lin Y.C., Chen B.Y., Tsai S.P., Majlis B.Y., Dee C.F., Chang E.Y., Effective passivation with high-density positive fixed charges for GaN MIS-HEMTs. IEEE J. Electron Devices Society, 2017; 5(3): 170—174. https://doi.org/10.1109/JEDS.2017.2669100
19. Liu X., Wang X., Zhang Y., Wei K., Zheng Y., Kang X., Jiang H., Li J., Wang W., Wu X., Wang X. Insight into the near-conduction band states at the crystallized interface between GaN and SiNx grown by low-pressure chemical vapor deposition. ACS Appl. Mater. Interfaces, 2018; 10(25): 21721—21729. https://doi.org/10.1021/acsami.8b04694
20. Enisherlova K.L., Kulikauskas V.S., Zatekin V.V., Rusak T.F., Gladysheva N.B., Razgulyaev I.I. AlGaN/GaN heterostructure study using Rutherford backscattering spectrometry. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2011; 5(4): 626—635. https://doi.org/10.1134/S1027451011070093
21. Antonov A.V., Gavrilenko V.I., Demidov E.V., Zvonkov B.N., Uskova E.A. Current oscillations under lateral transport in GaAs / InGaAs quantum well heterostructures. Fizika i tekhnika poluprovodnikov, 2005; 39(1): 53—58. (In Russ.). http://journals.ioffe.ru/articles/viewPDF/5699
22. Yoder P.D., Sridharan S., Graham S., Shen S.C., Ryou J.H., Dupuis R.D. Traveling dipole domains in AlGaN/GaN heterostructures and the direct generation of millimeter-wave oscillations. Phys. Status Solidi C, 2011; 8(7–8): 2285—2287. https://doi.org/10.1002/pssc.201001143
23. Eller B.S., Yang J., Nemanich R.J., Electronic surface and dielectric interface states on GaN and AlGaN. J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films, 2013; 31(5): 050807. https://doi.org/10.1116/1.4807904
24. Gustafson B. Resonant tunneling in laterally confined quantum structures. Lund University (Sweeden), 2001, 106 p. https://lup.lub.lu.se/record/41579
25. Dong Z., Hao R., Zhang Z., Cai C., Zhang B., Cheng Z. Impact of N-plasma treatment on the Current collapse of ALGAN/GAN HEMTs. In: 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Guilin (China): IEEE, 2014, pp. 1—3. https://doi.org/10.1109/ICSICT.2014.7021380
Review
For citations:
Еnisherlova K.L., Seidman L.A., Temper E.T., Kontsevoy Yu.A. Influence of PECVD features of SiNx deposition processes on electrical parameters of SiNx/AlGaN/GaN structures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):107-118. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-107-118