Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Investigation of the effect of short-term exposure of oxygen and hydrogen plasma on the composition and structure of thin tin dioxide films

https://doi.org/10.17073/1609-3577-2021-2-119-130

Abstract

Modern technologies cannot do without the production of thin films of tin dioxide, which are most widely used mainly in three areas: as transparent electrodes, catalysts, and solid-state sensors of various gases. Their use as transparent electrodes is associated with a high transmittance of tin dioxide layers in the optical range, as well as with their low electrical resistivity. The effect of short-term exposure to plasma on the composition and structure of thin films of tin dioxide obtained from a solution of pentahydrate tin tetrachloride in 97% ethanol with different concentrations of tin ions is considered. A linear character of the dependence of the thickness of the tin dioxide SnO2 films on the concentration of the solution and the number of deposited layers is revealed. A decrease in the electrical resistance of the films with an increase in the concentration of the initial solution and an increase in the number of layers was found. It is shown that the treatment of SnO2 films with hydrogen plasma makes it possible to reduce their electrical resistance of the films without decreasing the transparency. Treatment with oxygen plasma reduces the transparency of the SnO2 films, and the resistance of the films increases with an increase in the duration of such treatment.

About the Authors

N. M. Tompakova
Satbayev University
Kazakhstan

22A Satpayev Str., Alma-Ata 050013

Nazgul M. Tompakova — Senior-Lecturer, Master of Physics



A. A. Polisan
National Research Technological University "MISiS"
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Andrey A. Polisan — Dr. Sci. (Eng.), Professor



References

1. Lee S.Y., Cho S.H., Cho Y.S., Kim S.J., Kim S.H. Carbon black and titanium interlayers between zinc oxide photo electrode and fluorine-doped tin oxide for dye-sensitized solar cells. J. Nanoscience and Nanotechnology. 2019; 19(7): 4260–4264. https://doi.org/10.1166/jnn.2019.16269

2. Demir E., Aydin M., Arie A.A., Demir-Cakan R. Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. J. Alloys and Compounds. 2019; 788: 1093–1102. https://doi.org/10.1016/j.jallcom.2019.02.264

3. Park B.E., Park J., Lee S., Lee S., Kim W.H., Kim H. Phase-controlled synthesis of SnOx thin films by atomic layer deposition and post-treatment. Applied Surface Science. 2019; 480: 472–477. https://doi.org/10.1016/j.apsusc.2019.03.013

4. Tompakova N.M., Dmitriyeva E.A., Lebedev I.A., Serikkanov A.S., Grushevskaya E.A., Mit’ K.A., Fedosimova A.I. Influence of hydrogen plasma on SnO2 thin films. Materials Today: Proceedings. 2020; 25(1): 83–87. https://doi.org/10.1016/j.matpr.2019.12.053

5. Kiliç C., Zunger A. Observation of solitary elastic surface pulses. Physical Review Letters. 2002; 88: 076104-2–076104-4.

6. Tompakova N.M., Dmitriyeva E.A., Grushevskaya E.A., Lebedev I.A., Serikkanov A.S., Mukhamedshina D.M., Mit’ K.A. Effect of three-minute hydrogen plasma treatment on the structure and properties of SnO2 thin films. Recent Contributions to Physics. 2019; 71(4): 67–74. (In Russ.). https://doi.org/10.26577/RCPh-2019-i4-9

7. Fedosimova A.I., Baytimbetova B.A., Dmitrieva E.A., Lebedev I.A., Ryabikin Yu.A., Temiraliev A.T. Noise alignment for thin SnO2 films. XX International Sol-Gel Conference, The Next Generation. St. Petersburg (Russia); 2019: 457.

8. Dmitrieva E.A., Lebedev I.A., Grushevskaya E.A., Murzalinov D.O., Serikkanov A.S., Tompakova N.M., Fedosimova A.I. The effect of three-minute exposure of oxygen plasma on the properties of tin oxide films. Materials of the international scientific conference of students and young scientists "FARABI ƏLEMI". Almaty (Kazakhstan); 2020: 197. (In Russ.)

9. Cui H.T., Zheng Z.Q. Electrically conductive TiO2/indium tin oxide coated glass substrates with high visible light transparency prepared by an electrodeposition method. Thin Solid Films. 2019; 691: 137612. https://doi.org/10.1016/j.tsf.2019.137612

10. Mohammad T., Kumar V., Dutta V. Spray deposited indium doped tin oxide thin films for organic solar cell application. Physica E: Low-dimensional Systems & Nanostructures. 2020; 117: 113793. https://doi.org/10.1016/j.physe.2019.113793

11. Ozen Y., Candan I. SnO2 interlayer effects on the inverted polymer solar cells. Chemical Physics Letters. 2020; 740: 137078. https://doi.org/10.1016/j.cplett.2019.137078

12. Batzill M., Diebold U. The surface and materials science of tin oxide. Progress in Surface science. 2005; 79: 47–154. https://doi.org/10.1016/j.progsurf.2005.09.002

13. Zhang R.Y., Zhu F.F., Dong Y., Wu X.M., Sun Y.H., Zhang D.R., Zhang T., Han M.L. Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge. Renewable Energy. 2020; 147(1): 275–283. https://doi.org/10.1016/j.renene.2019.08.141

14. Chen Z., Fan T.T., Zhang Y.Q., Xiao J., Gao M.R., Duan N.Q., Zhang J., Li J.-H., Liu Q., Yi X., Luo J.-L. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Applied Catalysis B-environmental. 2020; 261: 118243. https://doi.org/10.1016/j.apcatb.2019

15. Zhang B., Wang Y., Zhang J., Chen S., Sun L. Well-dispersed SnO2 nanocrystals on n-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction. Journal of Energy chemistry. 2020; 41: 7–14. https://doi.org/ 10.1016/j.jechem.2019.04.022

16. Grushevskaya E.A., Ibraimova S.A., Dmitriyeva E.A., Lebedev I.A., Mit’ K.A., Mukhamedshina D.M., Fedosimova A.I., Serikkanov A.S., Temiraliev A.T. Sensitivity to ethanol vapour of thin films SnO2 doped with fluorine. Eurasian Chemico-Technological Journal. 2019; 21(1): 13–17. https://doi.org/10.18321/ectj781

17. Dmitriyeva E.A., Mukhamedshina D.M., Mit’ K.A., Lebedev I.А., Girina I.I., Fedosimova A.I., Grushevskya E.A. Doping of fluorine of tin dioxide films synthesized by sol-gel method. News of the National Academy of Sciences of the Republic of Kazakhstan (series of geology and technical sciences). 2019; 433(1): 73–79. https://doi.org/10.32014/2019.2518-170x.9

18. Manikandan V., Petrila I., Vigneselvan S., Mane R.S., Vasile B., Dharmavarapu R., Lundgaard S., Juodkazis S., Chandrasekaran J. A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO2) for sensing carbon dioxide gas and humidity. RSC Advances. 2020; 10(7): 3796–3804. https://doi.org/10.1039/c9ra09579а

19. Somjaijaroen N., Sakdanuphab R., Chanlek N., Chirawatkul P., Sakulkalavek A. Simultaneous O2 plasma and thermal treatment for improved surface conductivity of Cu-doped sno2 films. vacuum. 2019; 166: 212–217. https://doi.org/10.1016/j.vacuum.2019.05.017

20. Stuckert E.P., Fisher E.R. Ar/O2 and H2O plasma surface modification of SnO2 nanomaterials to increase surface oxidation. Sensors and Actuators B: Chemical. 2015; 208: 379–388. https://doi.org/10.1016/j.snb.2014.11.049

21. Seo H.B., Bae B.S., Bang H.I., Yun E.J. Effects of plasma treatment on the composition and phase changes of sputter-deposited SnOx thin films. Journal of Nanoscience and Nanotechnology. 2020; 20(1): 197–205. https://doi.org/10.1166/jnn.2020.17225

22. Neeraj K.M., Kumar Ch., Kumar A., Kumar M., Chaudhary P., Rajeev Singh. Structural and optical properties of SnO2-Al2O3 nanocomposite synthesized via sol-gel route. Materials science-poland. 2015; 33(4): 714–718. https://doi.org/10.1515/msp-2015-0101

23. Yarmonov A.N., Larionov D.D., Yakhikhanov R.R. Obtaining optically transparent conductive coatings by thermal evaporation. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2015; 17(2(4)): 936–939. (In Russ.)

24. Dmitrieva E.A., Mukhamedshina D.M., Beisenkhanov N.B., Mit' K.A. The effect of NH4F and NH4OH on the structure and physical properties of thin SnO2 films synthesized by the sol-gel method. Glass Physics and Chemistry. 2014; 40(1): 31–36. https://doi.org/10.1134/s1087659614010076

25. Mukhamedshina D.M., Fedosimova A.I., Dmitriyeva E.A., Lebedev I.A., Grushevskaya E.A., Ibraimova S.A., Mit’ K.A., Serikkanov A.S. Influence of plasma treatment on physical properties of thin SnO2 films obtained from SnCl4 solutions with additions of NH4F and NH4OH. Eurasian Chemico-Technological Journal. 2019; 21: 57–61. https://doi.org/10.18321/ectj791

26. Grushevskaya E.A., Dmitrieva E.A., Lebedev I.A., Ryabikin Yu.A., Temiraliev A.T., Fedosimova A.I. A method for increasing the signal-to-noise ratio in EPR spectroscopy. Vestnik KazNU. 2018; (2): 76–82. (In Russ.)

27. Zhukov R.N., Kiselev D.A., Shcherbachev K.D., Voronova M.I., Ksenich S.V., Temirov A.A., Timushkin N.G., Chichkov M.V., Bykov A.S., Malinkovich M.D., Parkhomenko Y.N. Synthesis and nanoscale characterization of LiNbO3 thin films deposited on Al2O3 substrate by RF magnetron sputtering under electric field. J. of Nano- and Electronic Physics. 2017; 8(4): 04025. https://doi.org/10.21272/jnep.8(4(1)).04025


Review

For citations:


Tompakova N.M., Polisan A.A. Investigation of the effect of short-term exposure of oxygen and hydrogen plasma on the composition and structure of thin tin dioxide films. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):119-130. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-119-130

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)