Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Growing indium antimonide single crystals with a diameter of 100 mm by the modified Chochralsky method

https://doi.org/10.17073/1609-3577-2021-3-190-198

Abstract

At present, all over the world there is a tendency to increase the diameters of single crystals of both elementary semiconductors and semiconductor compounds. There are reports indicating the use of single crystals of III-V semiconductors with a diameter of four to six inches. So far, indium antimonide single crystals up to 75 mm in diameter have been obtained in Russia.
Indium antimonide is the element base of the broadest field of solid-state electronics — optoelectronics. On its basis, linear and matrix photodetectors are manufactured, operating in the spectral wavelength range of 3-5 microns, which are used as a viewing element in thermal imaging systems.
In this work, we selected the thermal growth conditions and obtained indium antimonide single crystals 100 mm in diameter in the crystallographic direction [100]. The solution of this problem has made it possible to significantly increase the yield of suitable photodetectors.
Single crystals 100 mm in diameter were grown by the Czochralski method in a two-stage process. The design of the graphite heating unit was enlarged and matched to a working crucible with a diameter of 150 millimeters and a load of 4.5-5 kg.
The Van der Pauw method was used to measure the electrical properties of the obtained single crystals, which corresponded to the standard parameters of undoped indium antimonide. Using an optical microscope, the etching pits were counted using the 9-field method. The dislocation density in crystals with a diameter of 100 mm was ≤ 100 cm-2 and corresponded to the values ​for crystals of 50 mm.

About the Authors

R. Yu. Kozlov
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Roman Yu. Kozlov — Head of the Laboratory



S. S. Kormilitsina
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Svetlana S. Kormilitsina — Junior Researcher



E. V. Molodtsova
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Elena V. Molodtsova — Cand. Sci. (Eng.), Leading Researcher



E. O. Zhuravlev
Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Evgeny O. Zhuravlev — Trainee Student



References

1. Weiss E. Thirty years of HgCdTe technology in Israel. SPIE Proc.: Infrared Technology and Applications XXXV, 2009; 7298: 72982W. https://doi.org/10.1117/12.818237

2. Gershon G., Albo A., Eylon M., Cohen O., Calahorra Z., Brumer M., Nitzani M., Avnon E., Aghion I., Kogan I., Ilan E., Tuito A., Ben Ezra M., Shkedy L. Large format InSb infrared detector with 10 μm pixels. Proc. OPTRO. Paris; 2014.

3. Burlakov I.D., Boltar K.O., Mirofyanchenko A.E., Vlasov P.V., Lopukhin A.A., Pryanikova E.V., Solov’ev A.N., Semenov A.N., Mel’tser B.Ya., Komissarova T.A., L’vova T.V., Ivanov S.V. Investigation of InSb structures grown by molecular beam epitaxy. Uspekhi prikladnoi fiziki. 2015; 3(6): 559—565. (In Russ.)

4. Sukhanov M.A., Bakarov A.K., Protasov D.Yu., Zhuravlev K. S. AlInSb/InSb heterostructures for IR photodetectors grown by molecular-beam epitaxy. Tech. Phys. Lett. 2020; 46: 154—157. https://doi.org/10.1134/S1063785020020285

5. Alfimova D.L., Lunina M.L., Lunin L.S., Pashchenko O.S., Pashchenko A.S., Yatsenko A.N. Bismuth effect on structural perfection of AlGaInSbBi elastic-strained epitaxial layers grown on InSb substrates. Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya. 2020; 8: 20—25. (In Russ.). https://doi.org/10.31857/S1028096020080038

6. Naumov A.V., Popov V.K. Modern cooled photodetectors of the IR range. Market dynamics before and after the pandemic. Security systems, 2020; 3: 68—70. (In Russ.). https://astrohn.ru/wp-content/uploads/2020/10/68-70.pdf

7. Ponomarenko V.P., Filachev A.M. Infrakrasnaya tekhnika i elektronnaya optika. Stanovlenie nauchnykh napravlenii (1946—2006) [Infrared technology and electronic optics. Formation of scientific directions (1946—2006)]. Moscow: Fizmatkniga, 2006, 326 p. (In Russ.)

8. Brouk J., Alameh K., Nemirovsky Y. Design and Characterization of CMOS/SOI Image Sensors. IEEE Transaction on Electron Devices. 2007; 54(3): 468—475. https://doi.org/10.1109/TED.2006.890585

9. Davygora A.P., Syrov Y.V. InSbS3: a new representative of tubular crystals. Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya. 2018; (11): 109—112. (In Russ.). https://doi.org/10.1134/S0207352818110094

10. Mikhailova M.P., Andreev I.A. High-speed avalanche photodiode for the 2-5 µm spectral range. In: Krier A. (Eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, V. 118 London: Springer; 2006: 547—592. https://doi.org/10.1007/1-84628-209-8_17

11. Choi K.K., Monroy C., Swaminathan V., Tamir T., Leung M., Devitt J., Forrai D., Endres D. Optimization of corrugated-QWIPs for large format, high-quantum-efficiency, and multicolor FPAs. SPIE Proc.:Infrared Technology and Applications XXXII. SPIE. 2006; 6206: 62060B. https://doi.org/10.1117/12.663960

12. Furlong M.J., Dallas G., Meshew G., Flint J. P., Small D., Martinez B., Mowbray A. Growth and characterization of 6” InSb substrates for use in large-area infrared-imaging applications. SPIE Proc.:Quantum Sensing and Nanophotonic Devices XI. 2014; 8993: 89931J. https://doi.org/10.1117/12.2042393

13. Nashelsky A.Ya. Technology of special materials of electronic equipment. Moscow: Metallurgiya; 1993. 368 p. (In Russ.)

14. Wafer Technology Ltd. URL: http://www.wafertech.co.uk/

15. MTI Corporation. URL: http://www.mtixtl.com/

16. Xiamen Powerway Advanced Material Co, Ltd. URL: https://www.powerwaywafer.com/compound-semiconductor.html

17. Patent 2482228 C1 (RU). Method for production of indium ammonide large-size monocrystals. V.S. Ezhlov, A.G. Milvidskaya, E.V. Molodtsova, G.P. Kolchina, M.V. Mezhenny, V.Ya. Reznik, 2012. (In Russ.). https://patents.s3.yandex.net/RU2482228C1_20130520.pdf

18. Milvidsky M.G., Osvensky V.B. Structural defects in semiconductor single crystals. Moscow: Metallurgiya; 1984. 256 p. (In Russ.)

19. Allen L.P., Flint P.J., Meschew G., Dallas G., Bakken D., Brown G.J., Khoshakhlagh A., Hill C.J. 100mm diameter GaSb substrates with extended IR wavelength for advanced space-based applications. SPIE Proc.: Infrared Technology and Applications XXXVII, 2011; 8012: 801215. https://doi.org/10.1117/12.882937

20. Ezhlov V.S., Milvidskaya A.G., Molodtsova E.V., Kolchina G.P., Mezhennyi M.V., Resnick V. Ya. Investigation on the properties of large [100]-oriented InSb single crystals grown by Czohralski method. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2012; (2): 13—17. (In Russ.)


Review

For citations:


Kozlov R.Yu., Kormilitsina S.S., Molodtsova E.V., Zhuravlev E.O. Growing indium antimonide single crystals with a diameter of 100 mm by the modified Chochralsky method. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):190-198. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-190-198

Views: 812


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)