Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Dielectric and piezoelectric properties of PLZT x/40/60 (x = 5; 12) ceramics

https://doi.org/10.17073/1609-3577-2021-3-162-169

Abstract

The paper presents the results of studies of the structure, piezoelectric and dielectric properties of lead zirconate-titanate ceramics modified with lanthanum of various concentrations (PLZT). It was found that with an increase in the La content, the grain size and the average domain size increase. The PLZT 12/40/60 samples contain both labyrinth-like and periodic domains, as well as different lateral sizes from several hundred nanometers to 3 microns in diameter. It was found that the piezoelectric response signal increases with increasing domain sizes in samples with a high lanthanum content. The fact of the existence of areas on surface of PLZT x/40/60 ceramics having an internal displacement field is established, as evidenced by the asymmetry of the remnant piezoelectric hysteresis loops along the voltage axis. 
In the samples PLZT 5/40/60 and PLZT 12/40/60, a significant dispersion of the permittivity ε(f) and a maximum of the tangent of the dielectric loss angle were observed in the frequency range from 105 to 106 Hz. This is due to the presence of ionic relaxation polarization, as is the case in ionic dielectrics. It is established that the value of the dielectric constant increases markedly with increasing La, which confirms the occurrence of a rigid unipolar state in the PLZT 12/40/60 ceramic grains. In the samples under study, an increase in the tangent of the dielectric loss angle is observed at low frequencies of the measuring field, which is associated with the contribution of conductivity to tg δ. The dependences of the dielectric loss factor ε” on the dielectric permittivity ε’are constructed. They have the form of Cole-Cole diagrams, which indicates the presence of a relaxation time spectrum, while it was found that the spectrum width in PLZT 5/40/60 samples is about two times less than in PLZT 12/40/60 samples.

About the Authors

A. I. Shcheglova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Anastasiya I. Shcheglova — Master of Science



I. L. Kislova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Inna L. Kislova — Cand. Sci. (Phys.–Math.), Associate Professor



T. S. Ilina
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Ave., Moscow 119049

Tatiana S. Ilina — Junior Researcher



D. A. Kiselev
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Ave., Moscow 119049

Dmitry A. Kiselev — Ph.D., Cand. Sci. (Phys.–Math.), Head of the Laboratory of Physics of Oxide Ferroelectrics



E. V. Barabanova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Ekaterina V. Barabanova — Cand. Sci. (Phys.–Math.), Associate Professor



A. I. Ivanova
Tver State University
Russian Federation

33 Zhelyabova Str., Tver 170100

Alexandra I. Ivanova — Cand. Sci. (Phys.–Math.), Associate Professor



References

1. Sidorkin A.S. Domain structure in ferroelectrics and related materials. Moscow: Fizmatlit; 2000. 240 p. (In Russ.)

2. Smolenskii G.A., Bokov V.A. et al. Physics of ferroelectric phenomena. Leningrad: Nauka; 1985. 396 p. (In Russ.)

3. Bataev A.A. Composition materials. Moscow: Logos; 2006. 397 p. (In Russ.)

4. Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T., Nakamura M. Lead-free piezoceramics. Nature. 2004; 432: 84—87. https://doi.org/10.1038/nature03028

5. Darlington C.N. On the changes in structure of PLZT (8.7/65/35) between 80 and 750 K. Phys. Stat. Sol. 1989; 113: 63—69. https://doi.org/10.1088/0022-3719/21/21/008

6. He Y. Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochimica Acta. 2004; 419: 135—141. https://doi.org/10.1016/j.tca.2004.02.008

7. Zhuo F.P., Li Q., Gao J.H., Wang Y.J., Yan Q.F., Xia Z.G., Zhang Y.L., Chu X.C. Structural phase transition, depolarization and enhanced pyroelectric properties of (Pb1-1.5xLax)(Zr0.66Sn0.23Ti0.11)O3 solid solution. J. Mater. Chem. 2016; 4: 7110—7118. https://doi.org/10.1039/C6TC01326K

8. Hiroshi M. Thermal energy harvesting of PLZT and BaTiO3 ceramics using pyroelectric effects. Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications. 2019; 12: 217—229. https://doi.org/10.1016/B978-0-12-814499-2.00012-8

9. Vodopivec B., Filipic C., Levstik A., Holc J., Kutnjak Z. E-T phase diagram of the 6.5/65/35 PLZT incipient ferroelectric. Journal of the European Society. 2004; 34: 1561—1564. https://doi.org/10.1016/S0955-2219(03)00535-1

10. Grechishkin R.M., Kaplunov I.A., Ilyashenko S.E., Malyshkina O.V., Mamkina N.O., Lebedev G.A., Zalyotov A.B. Magnetoelectric effect in metglas/piezoelectric macrofiber composites. Ferroelectrics. 2011; 424(1): 78—85. https://doi.org/10.1080/00150193.2011.623939

11. Karpenkov D.Y., Bogomolov A.A., Solnyshkin A.V., Karpenkov A.Y., Shevyakov V.I., Belov A.N. Multilayered ceramic heterostructures of lead zirconate titanate and nickel-zinc ferrite for magnetoelectric sensor elements. Sensors and Actuators A: Physical. 2017; 266: 242—246. https://doi.org/10.1016/j.sna.2017.09.011

12. Ferri A., Saitzek S., Da Costa A., Desfeux R., Leclerc G., Bouregba R., Poullain G. Thickness dependence of the nanoscale piezoelectric properties measured by piezoresponse force microscopy on (111)-oriented PLZT 10/40/60 thin films. Surface Science. 2008; 602(11): 1987—1992. https://doi.org/10.1016/j.susc.2008.04.001

13. Saha S.K., Pramanik P. Synthesis of nanophase PLZT (12/40/60) powder by PVA-solution technique. Nanostructured Materials. 1997; 8(1): 29—36. https://doi.org/10.1016/S0965-9773(97)00062-7

14. Deb K.K. Pyroelectric characteristics of a hot-pressed lanthanum-doped PZT (PLZT (8/40/60)). Materials Letters. 1987; 5(5-6): 222—226. https://doi.org/10.1016/0167-577X(87)90015-2

15. Buixaderas E., Gregora I., Kamba S., Petzelt J., Kosec M. Raman spectroscopy and effective dielectric function in PLZT x/40/60. Journal of Physics: Condensed Matter. 2008; 20; 345229. https://doi.org/10.1088/0953-8984/20/34/345229

16. Buixaderas E., Nuzhnyy D., Veljko S., Savinov M., Vanek P., Kamba S., Petzelt J., Kosec M. Broad-band dielectric spectroscopy of tetragonal PLZT x/40/60. Phase Transitions - PHASE TRANSIT. 2006; 79: 415—426. https://doi.org/10.1080/01411590600892179

17. Li S., Nie H.C., Chen X.F., Cao F., Wang G.S., Dong X.L. Structure, phase transition behavior and electrical properties of Pb0.99(SnxZr0.95-xTi0.05)0.98Nb0.02O3 ceramics. J. Alloys Compd. 2018; 732: 306—313. https://doi.org/10.1016/j.ceramint.2018.12.216

18. Makarova L.A., Alekhina Yu.A., Perov N.S., Omelyanchik A.S., Rodionova V.V., Malyshkina O.V. Elastically coupled ferromagnetic and ferroelectric microparticles: new multiferroic materials based on polymer, NdFeB and PZT particles. Journal of Magnetism and Magnetic Materials. 2019; 470: 89—92. https://doi.org/10.1016 /j.jmmm.2017.11.121

19. Kallaev S.N., Omarov Z.M., Mitarov R.G., Sadykov S.A., Khasbulatov S.V., Reznichenko L., Bormanis K., Kundzinish M. Heat capacity and thermal conductivity of multiferroics Bi1-xPrxFeO3. Integrated Ferroelectrics. 2019; 196(1): 120—126. https://doi.org/10.1080/10584587.2019.1591973

20. Mitarov R.G., Kallaev S.N., Sadykov S.M., Thermal properties of PLZT relaxor ferroelectric ceramics. Vestn. Dagest. Tekh. Univ., Tekh. Nauki, 2010; (18): 53—60. (In Russ.). https://cyberleninka.ru/article/n/teplovye-svoystva-relaksornoy-segnetokeramiki-tstsl

21. Horcas I., Fernández R., Gómez-Rodríguez J.M, Colchero J., Gómez-Herrero J., Baro A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007; 78: 013705. https://doi.org/10.1063/1.2432410

22. Kholkin A.L., Kiselev D.A., Bdikin I.K., Sternberg A., Dkhil B., Jesse S., Ovchinnikov O., Kalinin S.V. Mapping disorder in polycrystalline relaxors: A piezoresponse force microscopy approach. Materials. 2010; 3: 4860—4870. https://doi.org/10.3390/ma3114860

23. Hong S., Woo J., Shin H., Jeon J.U., Pak Y.E., Colla E.L., Setter N., Kim E., No K. Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 2001; 89: 1377—1386. https://doi.org/10.1063/1.1331654

24. Bogomolov A.A., Solnyshkin A.V., Lazarev A.Yu., Kiselev D.A., Kholkin A.L. Polarization of surface layers in PLZT relaxor ceramics. Ferroelectrics. 2008; 374: 144—149. https://doi.org/10.1080/00150190802427598

25. Tareev B.M. Physics of dielectric materials. Moscow: Energoizdat; 1982. 320 p. (In Russ.)

26. Gao J.H., Li Q., Li Y.Y., Zhuo F.P., Yan Q.F., Cao W.W., Xi X.Q., Zhang Y.L., Chu X.C. Electric field induced phase transition and domain structure evolution in (Pb, La)(Zr,Sn,Ti)O3 single crystal. Appl. Phys. Lett. 2015; 107(7): 072909. https://doi.org/10.1063/1.4929463


Review

For citations:


Shcheglova A.I., Kislova I.L., Ilina T.S., Kiselev D.A., Barabanova E.V., Ivanova A.I. Dielectric and piezoelectric properties of PLZT x/40/60 (x = 5; 12) ceramics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):162-169. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-162-169

Views: 787


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)