Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Influence of preparation regimes and composition on structure, phase state and electric properties of nanogranular (FeCoZr)x(PZT)100-x (30 ≤ x ≤ 85 at.%) films

https://doi.org/10.17073/1609-3577-2021-3-143-152

Abstract

Granular films containing Fe50Co50Zr10 alloy nanoparticles inside the ferroelectric matrix Pb0.81Sr0.04(Na0.5Bi0.5)0.15(Zr0.575Ti0.425)O3 (PZT) are characterized by a complex of functional magnetic and electrical characteristics that can be effectively controlled by an external electric or magnetic field. The formation of the necessary granular structure in the case of a PZT matrix is possible only during synthesis in an oxygen-containing atmosphere, leading to significant oxidation of metal nanoparticles. In this regard, an urgent task is to study the degree of oxidation of metal nanoparticles depending on the synthesis conditions, as well as the influence of the forming phases on the electrical properties of films.
The relationship of the phase composition and electrical characteristics of granular films (FeCoZr)x(PZT)100-x (30 ≤ x ≤ 85, at.%) obtained in an oxygen-containing atmosphere at a pressure of PO in the range (2.4—5.0) ⋅ 10-3 Pa was studied by X-ray diffraction analysis, EXAFS spectroscopy (Extended X-ray Absorption Fine Structure) and four-probe electrical resistivity measurements.
A comparative complex analysis of the structural-phase composition and local atomic order in films (FeCoZr)x(PZT)100-x for the first time showed the fundamental influence of oxygen pressure during synthesis on the oxidation of nanoparticles and their phase composition. It is shown that in the case of oxygen pressure up to the values of PO = 3.2 ⋅ 10-3 Pa, a transition from nanoparticles of complex Fe(Co,Zr) oxides occurs with increasing x to the superposition of complex oxides and ferromagnetic nanoparticles α-FeCo(Zr,O) (or their agglomerations). At a higher oxygen pressure PO = 5.0 ⋅ 10-3 Pa, complete oxidation of nanoparticles is observed with the formation of a complex oxide (FexCo1-x)1-δO with a wustite structure.
The observed structural-phase composition allows us to explain the measured temperature dependences of the electrical resistance of granular films, characterized by a negative temperature coefficient of electrical resistance (TKR) in the entire range of film compositions at high oxygen pressure (PO = 5.0 ⋅ 10-3 Pa), and the transition to positive TKR at lower oxygen pressure (PO = 3.2 ⋅ 10-3 Pa) in the synthesis atmosphere and the value x ≤ 69 at.% in films. The transition from negative to positive TKR, indicating the presence of a metallic contribution to conductivity, is fully correlated with the detection by XRD and EXAFS methods of non-oxidized ferromagnetic nanoparticles α-FeCo(Zr,O) or their agglomerations.

About the Author

J. A. Fedotova
Institute for Nuclear Problems, Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Julia A. Fedotova — Dr. Sci. (Phys.-Math.), Chief Researcher, Deputy-Director



References

1. Zolotukhin I.V., Stognei O.V. Physics of nanosystems: graphenes and granular nanocomposites. Voronezh: Voronezh State Technical University; 2011. 226 p. (In Russ.)

2. Sitnikov A.V. Electrical and magnetic properties of nanoheterogeneous metal-dielectric systems: Dis. Dr. Sci. (Phys.-Math.). Voronezh; 2009. 280 p. (In Russ.)

3. Blinov M.I., Shakhov M.A., Rylkov V.V., Lähderant E., Prudnikov V.N., Nikolaev S.N., Sitnikov A.V., Granovsky A.B. Magnetoresistance of (Co40Fe40B20)x(SiO2)100-x and (Co84Nb14Ta2)x(Al2O3)100-x nanocomposites below the percolation threshold in pulsed magnetic fields. J. Magn. Magn. Mater. 2019; 469: 155—160. https://doi.org/10.1016/j.jmmm.2018.08.023

4. Kalinin Yu.E., Makagonov V.A., Sitnikov A.V., Granovsky A.B. Electrical properties of ferromagnetic-insulator nanocomposites. Eur. Phys. J. Web Conf. 2018; 185: 03001. https://doi.org/10.1051/epjconf/201818503001

5. Antonets I.V., Kotov L.N., Golubev E.A., Kalinin Yu.E., Sitnikov A.V. The structure, conductive properties, and reflective properties of amorphous granulated (Co45Fe45Zr10)x(ZrO)1-x composite films. Tech. Phys. 2017; 62: 261—269. https://doi.org/10.1134/S1063784217020025

6. Kulyk M.M., Kalita V.M., Lozenko A.F., Ryabchenko S.M., Stognei O.V., Sitnikov A.V., Korenivski V. Magnetic properties and anisotropic coercivity in nanogranular films of Co/Al2O3 above the percolation limit. J. Phys. D: Appl. Phys. 2014; 47(34): 345002. https://doi.org/10.1088/0022-3727/47/34/345002

7. Antonets I.V., Kotov L.N., Golubev E.A., Kalinin Yu.E., Sitnikov A.V. Nanostructure and electrical conductivity of amorphous granulated (Co45Fe45Zr10)x(Al2O3)1-x composite films. Tech. Phys. 2016; 61(3): 416—423. https://doi.org/10.1134/S1063784216030038

8. Mikhailovskii Yu.O., Prudnikov V.N., Ryl’kov V.V., Chernoglazov K.Yu., Sitnikov A.V., Kalinin Yu.E., Granovskii A.B. Logarithmic temperature dependence of electrical resistivity of (Co41Fe39B20)x(AlO)100-x nanocomposites. Phys. Solid State. 2016; 58(3): 444—446. https://doi.org/10.1134/S1063783416030227

9. Kasiuk J.V., Fedotova J.A., Marszalek M., Karczmarska A., Mitura-Nowak M., Kalinin Yu.E., Sitnikov A.V. Effect of oxygen pressure on phase composition and magnetic structure of FeCoZr-Pb(ZrTi)O3 nanocomposites. Phys. Solid State. 2012; 54: 178—184. https://doi.org/10.1134/S1063783412010179

10. Kołtunowicz T.N., Fedotova J.A., Zhukowski P., Saad A., Fedotov A., Kasiuk J.V., Larkin A.V. Negative capacitance in (FeCoZr)—(PZT) nanocomposite films. J. Phys. D: Appl. Phys. 2013; 46(12): 125304. https://doi.org/10.1088/0022-3727/46/12/125304

11. Saad A., Fedotova J., Nechaj J., Szilagyi E., Marszalek M. Tuning of magnetic properties and structure of granular FeCoZr-Al2O3 nanocomposites by oxygen incorporation. J. Alloys Compd. 2009; 471(1–2): 357—363. https://doi.org/10.1016/j.jallcom.2008.03.120

12. Fedotova J.A., Przewoznik J., Kapusta Cz., Milosavljević M., Kasiuk J.V., Zukrowski J., Sikora M., Maximenko A.A., Szepietowska D., Homewood K.P. Magnetoresistance in FeCoZr-Al2O3 nanocomposite films containing “metal core-oxide shell” nanogranules. J. Phys. D: Appl. Phys. 2011; 44(49): 495001. https://doi.org/10.1088/0022-3727/44/49/495001

13. Gridnev S.A., Kalgin A.V. Phase transitions in xPbZr0.53Ti0.47O3-(1-x) Mn0.4Zn0.6Fe2O4 magnetoelectric composites. Phys. Solid State. 2009; 51: 1458—1461. https://doi.org/10.1134/S1063783409070324

14. Naĭden E.P., Zhuravlev V.A., Itin V.I., Terekhova O.G., Magaeva A.A., Ivanov Yu.F. Magnetic properties and structural parameters of nanosized oxide ferrimagnet powders produced by mechanochemical synthesis from salt solutions. Phys. Solid State. 2008; 50: 894—900. https://doi.org/10.1134/S1063783408050156

15. Shi Y., Ding J., Yin H. CoFe2O4 nanoparticles prepared by the mechanochemical method. J. Alloys Compd. 2000; 308(1–2): 290—295. https://doi.org/10.1016/S0925-8388(00)00921-X

16. Fedotova J., Kasiuk J., Przewoznik J., Kapusta Cz., Svito I., Kalinin Yu., Sitnikov A. Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3. J. Alloys Compd. 2011; 509(41): 9869—9875. https://doi.org/10.1016/j.jallcom.2011.07.066

17. Kasiuk J., Fedotova J., Przewoźnik J., Kapusta Cz., Sikora M., Żukrowski J., Grce A., Milosavljević M. Oxidation controlled phase composition of FeCo(Zr) nanoparticles in CaF2 matrix. Mater. Character. 2016; 113: 71—81. https://doi.org/10.1016/j.matchar.2016.01.010

18. Koltunowicz T.N., Zukowski P., Boiko O., Saad A., Fedotova J.A., Fedotov A.K., Larkin A.V., Kasiuk J. AC hopping conductance in nanocomposite films with ferromagnetic alloy nanoparticles in a PbZrTiO3 matrix. J. Electron. Mater. 2015; 44(7): 2260—2268. https://doi.org/10.1007/s11664-015-3685-9

19. Kumar H., Olivi L., Aquilanti G., Ghosh S., Srivastava P., Kabiraj D., Avasthi D. K. Stabilization of FeCo alloy phase in FeCo-SiO2 nanocomposites. Adv. Mater. Lett. 2013; 4(6): 390—397. https://doi.org/10.5185/amlett.2012.ib.101

20. Zukowski P., Koltunowicz T.N., Boiko O., Bondariev V., Czarnacka K., Fedotova J.A., Fedotov A.K., Svito I.A. Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100-x). Vacuum. 2015; 120(B): 37—43. https://doi.org/10.1016/j.vacuum.2015.04.035

21. Zukowski P., Koltunowicz T.N., Bomdariev V., Fedotov A.K., Fedotova J.A. Determining the percolation threshold for (FeCoZr)x(CaF2)(100-x) nanocomposites produced by pure argon ion-beam sputtering. J. Alloys Compd. 2016; 683: 62—66. https://doi.org/10.1016/j.jallcom.2016.05.070

22. Fujiwara Y., Matsuda H., Sato K., Jimbo M., Kobayashi T. Magnetoresistance and electronic structure of granular films with MgO or MgF2 matrices. J. Phys.: Conf. Ser. 2011; 266(1): 012087. https://doi.org/10.1088/1742-6596/266/1/012087

23. Peng D.L., Wang J.B., Wang L.S., Liu X.L., Wang Zh.W., Chen Y.Zh. Electron transport properties of magnetic granular films. Sci. China Phys. Mech. Astron. 2013; 56: 15—28. https://doi.org/10.1007/s11433-012-4969-1

24. Gerke M.N., Istratov A.V., Bukharov D.N., Novikova O.A., Skryabin I.O., Arakelian S.M. Studying the structure and electrical conductivity of thin granulated bimetallic films. Bull. Russ. Acad. Sci.: Physics. 2017; 81: 1387—1390. https://doi.org/10.3103/S1062873817120127


Review

For citations:


Fedotova J.A. Influence of preparation regimes and composition on structure, phase state and electric properties of nanogranular (FeCoZr)x(PZT)100-x (30 ≤ x ≤ 85 at.%) films. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):143-152. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-143-152

Views: 467


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)