Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites
https://doi.org/10.17073/1609-3577-2021-3-176-189
Abstract
Magnetic nanoparticles play an important role in rapidly developing advanced branches of science and industry, e.g. fabrication of magnetic storage media, synthesis of ferromagnetic liquids, medicine and chemistry. One problem faced in the usage of magnetic nanoparticles is their high chemical activity leading to oxidation in air and agglomeration. The chemical activity of magnetic nanoparticles stems from the contribution of their large specific surface to volume ratio. Carbon coating of nanoparticles reduces the interaction between nanoparticles. FeCoAl/C metal-carbon nanocomposites have been synthesized using IR pyrolysis of polymer / metal salt precursors. The effect of synthesis temperature (IR heating) in the range from 500 to 700 °C on the structure and composition of the nanomaterials has been studied. We show that the forming particles are the FeCoAl ternary solid solution with a FeCo based bcc lattice. An increase in the synthesis temperature from 500 to 700 °C leads to an increase in the coherent scattering region of three-component nanoparticles from 5 to 19 nm. An increase in the aluminum content from 20 to 30 % relative to Fe and Co results in an increase in the size of the nanoparticles to 15 nm but this also entails the formation of a Co based solid solution having an fcc lattice. An increase in the nanocomposite synthesis temperature and a growth of the relative Al content as a result of a more complete carbonization and the structure-building effect of metals reduce the degree of amorphousness of the nanocomposite carbon matrix and lead to the formation of graphite-like phase crystallites having an ordered structure. The effect of synthesis temperature and relative content of metals on the electromagnetic properties (complex dielectric and magnetic permeability) of the synthesized nanocomposites has been studied. Synthesis conditions affect the radio absorption properties of the nanocomposites, e.g. reflection loss (RL) in the 3—13 GHz range.
About the Authors
D. G. MuratovRussian Federation
29 Leninsky Ave., Moscow 119991,
4 Leninsky Ave., Moscow 119049
Dmitriy G. Muratov — Cand. Sci. (Eng.), Leading Researcher; Associate Professor
L. V. Kozhitov
Russian Federation
4 Leninsky Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
E. V. Yakushko
Russian Federation
4 Leninsky Ave., Moscow 119049
Egor V. Yakushko — Cand. Sci. (Eng.), Associate Professor
A. A. Vasilev
Russian Federation
29 Leninsky Ave., Moscow 119991,
4 Leninsky Ave., Moscow 119049
Andrey A. Vasilev — Junior Researcher; Assistant
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk, 142103
Alena V. Popkova — Senior Researcher
V. A. Tarala
Russian Federation
1 Pushkin Str., Stavropol 355017
Vitaly А. Tarala — Cand. Sci. (Chem.), Senior Researcher
E. Yu. Korovin
Russian Federation
6 Sakhyanova Str., Ulan-Ude 670047, Republic of Buryatia,
36 Lenin Ave., Tomsk 634050
Evgeniy Yu. Korovin — Cand. Sci. (Phys.-Math.)
References
1. Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian J. Inorg. Chem., 2002; 47(1): S32—S67. http://www.amtc.ru/publications/articles/5rus.pdf
2. Lu An-Hui, Salabas E.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866
3. Xu Y.H., Bai J., Wang J.P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J. Magn. Magn. Mater., 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174
4. Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M, Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Pet. Chem., 2016; 56(6): 522—528. https://doi.org/10.1134/S0965544116060049
5. Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. J. Alloys Compd., 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121
6. Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCO1-xFe2O4. J. Alloys Compd., 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147
7. Azizi A., Yoozbashizadeh Н., Sadmezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe–16.5Ni–16.5Co nano-powder. J. Magn. Magn. Mater., 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085
8. Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. J. Magn. Magn. Mater., 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0
9. Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. J. Magn. Magn. Mater., 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026
10. Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. J. Mater. Sci: Mater. Electron., 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7
11. Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticles. J. Alloys Compd., 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208
12. Nautiyal P., Seikh Md.M., Lebedev O.I., Kundu A.K. Sol-gel synthesis of Fe–Co nanoparticles and magnetization study. J. Magn. Magn. Mater., 2015; 377: 402—405. https://doi.org/10.1016/j.jmmm.2014.10.157
13. Ang K.H., Alexandrou I., Mathur N.D., Amaratunga G.A.J., Haq S. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology, 2004; 15(5): 520—524. https://doi.org/10.1088/0957-4484/15/5/020
14. Afghahi S.S.S., Shokuhfar A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core–shell nanostructure. J. Magn. Magn. Mater., 2014; 370: 37–44. https://doi.org/10.1016/j.jmmm.2014.06.040
15. Ibrahim E.M.M., Hampel S., Wolter A.U.B., Kath M., El-Gendy A.A., Klingeler R., Täschner C., Khavrus V.O., Gemming T., Leonhardt A., Büchner B. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. J. Phys. Chem. C, 2012; 116(42): 22509—22517. https://doi.org/10.1021/jp304236x
16. Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon, 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011
17. Liu X., Or S.W., Ho S.L., Cheung C.C., Leung C.M., Han Z., Geng D., Zhang Z. Full X–Ku band microwave absorption by Fe(Mn)/Mn7C3/C core/shell/shell structured nanocapsules. J. Alloys Compd., 2011; 509(37): 9071—9075. https://doi.org/10.1016/j.jallcom.2011.06.031
18. Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol., 2012; 72(13): 1632—1636. https://doi.org/10.1016/j.compscitech.2012.06.022
19. Xie Zh., Geng D., Liu X., Ma S., Zhang Zh. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules. J. Mater. Sci. Technol., 2011; 27(7): 607—614. https://doi.org/10.1016/S1005-0302(11)60115-1
20. Yang Y., Qia S., Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization. J. Alloys Compd., 2012; 520: 114—121. https://doi.org/10.1016/j.jallcom.2011.12.136
21. Zhao D.L., Zhang J.M., Li X., Shen Z.M. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J. Alloys Compd., 2010; 505(2): 712—716. https://doi.org/10.1016/j.jallcom.2010.06.122
22. Zhao D.L., Li X., Shen Z.M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd., 2009; 471(1-2): 457—460. https://doi.org/10.1016/j.jallcom.2008.03.127
23. Fan Y., Yang H., Liu X., Zhu H., Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite. J. Alloys Compd., 2008; 461(1-2): 490—494. https://doi.org/10.1016/j.jallcom.2007.07.034
24. Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. B, 2013; 178(1): 1—9. https://doi.org/10.1016/j.mseb.2012.06.005
25. Lu B., Dong X.L., Huang H., Zhang X.F., Zh X.G., Lei J.P., Sun J.P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater., 2008; 320(6): 1106—1111. https://doi.org/10.1016/j.jmmm.2007.10.030
26. Wang B., Zhang J., Wang T., Qiao L., Li F. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. J. Alloys Compd., 2013; 567: 21—25. https://doi.org/10.1016/j.jallcom.2013.03.028
27. Wang Z., Xiao P., He N. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon, 2006; 44(15): 3277—32841. https://doi.org/10.1016/j.carbon.2006.06.026
28. Singh A., Lavigne P. Deposition of diamond-like carbon films by low energy ion beam and d.c. magnetron sputtering. Surf. Coat. Technol., 1991; 47(1-3): 188—200. https://doi.org/10.1016/0257-8972(91)90281-Z
29. Dumitrache F., Morjan I., Fleaca С., Birjega R., Vasile E., Kuncser V., Alcxandrescu R. Parametric studies on iron-carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content. Appl. Surf. Sci., 2011; 257(12): 5265—5269. https://doi.org/10.1016/j.apsusc.2010.11.069
30. Yu F., Wang J.N., Sheng Z.M., Su L.F. Synthesis of carbon-encapsulated magnetic nanoparticles by spray pyrolysis of iron carbonyl and ethanol. Carbon, 2005; 43(14): 3018—3021. https://doi.org/10.1016/j.carbon.2005.06.008
31. Lin X.G., On Z.Q., Geng D.Y., Han Z., Jiang J.J., Lin W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon, 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011
32. Pat. 2686223 С1 (RU). Method of syntheses of nanocomposites Ag/C. L.V. Kozhitov, V.S. Sonkin, A.R. Muraleev, E.G. Sidin, D.D. Maganov, D.G. Muratov, E.V. Yakushko, A.V. Popkova, 2019. (In Russ.). https://patents.s3.yandex.net/RU2686223C1_20190424.pdf
33. Pat. 2593145 (RU). Method of producing FeNi3/C nanocomposite on industrial scale. L.V. Kozhitov, V.V. Kozlov, D.G. Muratov, V.G. Kostishin, E.V. Yakushko, G.E. Gelman, 2016. (In Russ.). https://patents.s3.yandex.net/RU2593145C1_20160727.pdf
34. Muratov D.G., Kozlov V.V., Krapukhin V.V., Kozhitov L.V., Karpacheva G.P., Zemtsov L.M. Study of electrical conductivity and semiconductor properties of a new carbon material based on IR-pyrolyzed polyacrylonitrile ((C3H3N)n). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2007; (3): 26—30. (In Russ.)
35. Kozitov L.V., Kostikova A.V., Kozlov V.V., Bulatov M.F. The FeNi3/C nanocomposite formation from the composite of Fe and Ni salts and polyacrylonitrile under IR-heating. J. Nanoelectron. Optoelectron., 2012; (7): 419—422.
36. Zemtsov L.M. Karpacheva G.P., Efimov M.N., Muratov D.G., Bagdasarova K.A. Carbon nanostructures Based on IR-pyrolyzed polyacrylonitrile. Vysokomolekulyarnye soedineniya. Ser. А, 2006; 48(6): 977—982.
37. Karpacheva G.P., Bagdasarova K.A., Bondarenko G.N., Zemtsov L.M., Muratov D.G., Perov N.S. Co-carbon nanocomposites based on IR-pyrolyzed polyacrylonitrile. Polymer Sci. A, 2009; 51(11-12): 1297—1302. https://doi.org/10.1134/S0965545X09110157
38. Dzidziguri L., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Sidorova E.N. Preparation and structure of metal-carbon nanocomposites Cu-C. Nanotechnol. Russia, 2010; 5(9-10): 665—668. https://doi.org/10.1134/S1995078010090119
39. Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B, 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095
40. Tuinstra F., Koenig J.L. Raman spectrum of graphite. J. Chem. Phys., 1970; 53(3): 1126—1130. https://doi.org/10.1063/1.167410
41. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun., 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052
Review
For citations:
Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):176-189. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-176-189