Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Углеродные наноструктуры, содержащие примесные атомы бора: особенности получения, физико-химические свойства и возможности применения

https://doi.org/10.17073/1609-3577-2022-1-64-91

Аннотация

Введение атомов замещения в углеродные нанотрубки – это эффективный способом контроля их физико-химических свойств, позволяющий расширять возможности их практического применения. Одним из наиболее привлекательных материалов для модифицирования углеродных нанотрубок является бор. Однако до настоящего времени не проведено систематизации результатов исследований, связанных с влиянием примесных атомов бора на свойства углеродных нанотрубок, что ослабляет возможность промышленного использования этого наноматериала. В работе рассмотрены наиболее эффективные (из предложенных на сегодня) способы получения углеродных нанотрубок, содержащих примесные атомы бора, проанализированы физико-химические свойства полученных наноматериалов. Кроме того, на основании теоретических и реальных экспериментов дан прогноз возможных областей их применения. Как показал сравнительный анализ разработанных технологий, наиболее эффективным методом является каталитическое осаждение паров из газовой фазы. Также рассмотрены механические, электронные и химические свойства бороуглеродных нанотрубок. Для более полного освещения вопроса о зависимости физико-химических свойств углеродных нанотрубок от концентрации борных примесей проведен модельный эксперимент с применением инструментария квантовой химии, показавший, что между шириной запрещенной зоны и количеством примесных атомов бора присутствует прямая зависимость. Представлены основные направления практического использования боросодержащих углеродных нанотрубок.

Об авторе

С. В. Борознин
Волгоградский государственный университет
Россия

Университетский просп., д. 100, Волгоград, 400062

Борознин Сергей Владимирович — канд. физ.-мат. наук, доцент, заведующий кафедрой судебной экспертизы и физического материаловедения



Список литературы

1. Agnoli S., Favaro M. Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A. 2016; 4(14): 5002—5025. https://doi.org/10.1039/C5TA10599D

2. Putri L.K., Ong W.J., Chang W.S., Chai S.P. Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science. 2015; 358: 2—14. https://doi.org/10.1016/j.apsusc.2015.08.177

3. Zhang W., Wu L., Li Z., Liu Y. Doped graphene: synthesis, properties and bioanalysis. RSC Advances. 2015; 5(61): 49521—49533. https://doi.org/10.1039/C5RA05051K

4. Kröckel C., Preciado-Rivas M.R., Torres-Sanchez V.A., Mowbray D.J., Reich S., Hauke F., Chacon-Torres J.C., Hirsch A. Understanding the electron-doping mechanism in potassium-intercalated single-walled carbon nanotubes. Journal of the American Chemical Society. 2020; 142(5): 2327—2337. https://doi.org/10.1021/jacs.9b11370

5. Hassani F., Tavakol H. Synthesis of sulfur-doped carbon nanotubes from sulfur powder using chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures. 2018; 26(8): 479—486. https://doi.org/10.1080/1536383X.2018.1448793

6. Mohammadi F., Tavakol H. Synthesis of phosphorus doped carbon nanotubes using chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures. 2018; 26(4): 218—225. https://doi.org/10.1080/1536383X.2018.1428567

7. Tavakol H., Mohammadi F. Synthesis of multi-walled phosphorus and sulfur codoped CNTs. Fullerenes Nanotubes and Carbon Nanostructures. 2018; 26(11): 715—721. https://doi.org/10.1080/1536383X.2018.1484731

8. Tavakol H., Keshavarzipour F. Sulfur doped carbon nanotube as a potential catalyst for the oxygen reduction reaction. RSC Advances. 2016; 6(67): 63084—63090. https://doi.org/10.1039/C6RA11447D

9. Saadat K., Tavakol H. Study of noncovalent interactions of end-caped sulfurdoped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations. Structural Chemistry. 2016; 27(3): 739—751. https://doi.org/10.1007/s11224-015-0616-6

10. Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: synthesis, characterization and emerging applications: A review. Chemical Engineering Journal. 2022; 427: 131616. https://doi.org/10.1016/j.cej.2021.131616

11. Sharma A., Dasgupta K., Banerjee S., Patwardhan A., Srivastava D., Joshi J.B. In-situ nitrogen doping in carbon nanotubes using a fluidized bed reactor and hydrogen storage behavior of the doped nanotubes. International Journal of Hydrogen Energy. 2017; 42(15): 10047—10056. https://doi.org/10.1016/j.ijhydene.2017.01.160

12. Keru G., Ndungu P.G., Nyamori V.O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes. Materials Chemistry and Physics. 2015; 153: 323—332. https://doi.org/10.1016/j.matchemphys.2015.01.020

13. Ai P., Tan M., Yamane N., Liu G., Fan R., Yang G., Yoneyama Y., Yang R., Tsubaki N. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol. Chemistry – A European Journal. 2017; 23(34): 8252—8261. https://doi.org/10.1002/chem.201700821

14. Sawant S.V., Banerjee S., Patwardhan A.W., Joshi J.B., Dasgupta K. Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes. International Journal of Hydrogen Energy. 2019; 44(33): 18193—18204. https://doi.org/10.1016/j.ijhydene.2019.05.029

15. Xu C., Zhou H., Fu C., Huang Y., Chen L., Yang L., Kuang Y. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high performance lithium-sulfur batteries. Electrochimica Acta. 2017; 232: 156—163. https://doi.org/10.1016/j.electacta.2017.02.140

16. Carroll D.L., Redlich P., Blase X., Charlier J.C., Curran S., Ajayan P.M., Roth S., Rühle M. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Physical Review Letters. 1998; 81: 2332. https://doi.org/10.1103/PhysRevLett.81.2332

17. Yeh M.H., Leu Y.A., Chiang W.H., Li Y.S., Chen G.L., Li T.J., Chang L.Y., Lin L.Y., Lin J.J., Ho K.C. Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on triiodide reduction reaction. Journal of Power Sources. 2018; 375: 29—36. https://doi.org/10.1016/j.jpowsour.2017.11.041

18. Yadav M.D., Patwardhan A.W., Joshi J.B., Dasgupta K. Kinetic study of multiwalled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition. Chemical Engineering Journal. 2019; 377: 119895. https://doi.org/10.1016/j.cej.2018.09.056

19. Yadav M.D., Dasgupta K., Patwardhan A.W., Kaushal A., Joshi J.B. Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition. Chemical Engineering Journal. 2019; 196: 91—103. https://doi.org/10.1016/J.CES.2018.10.050

20. Peng S., Cho K. Ab initio study of doped carbon nanotube sensors. Nano Letters. 2003; 3(4): 513—517. https://doi.org/10.1021/nl034064u

21. Wei P., Li X., He Z., Sun X., Liang Q., Wang Z., Fang C., Li Q., Yang H., Han J., Huang Y. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chemical Engineering Journal. 2021; 422: 130134. https://doi.org/10.1016/j.cej.2021.130134

22. Ha Y.M., Kim Y.O., Kim Y.N., Kim J., Lee J.S., Cho J.W., Endo M., Muramatsu H., Kim Y.A., Jung Y.C. Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser. Composites Part B: Engineering. 2019; 175: 107065 https://doi.org/10.1016/j.compositesb.2019.107065

23. Liang S., Niu H.Y., Guo H., Niu C.G., Liang C., Li J.S., Tang N., Lin L.S., Zheng C.W. Incorporating Fe3C into B, N co-doped CNTs: Non-radical-dominated peroxymonosulfate catalytic activation mechanism. Chemical Engineering Journal. 2021; 405: 126686. https://doi.org/10.1016/j.cej.2020.126686

24. Zheng Y., Li C.Y., Qi L.H., Yuan H.R., Liu Y.F., Zhu C.L., Chen Y.J. Reduced graphene oxide-supported boron and nitrogen co-doped carbon nanotubes with embedded cobalt nanoparticles for absorption of electromagnetic wave. Journal of Alloys and Compounds. 2011; 865: 158967. https://doi.org/10.1016/j.jallcom.2021.158967

25. Luo H., Zhou X., Chen Q., Zhou J. Removal of 2, 4-dichlorophenoxyacetic acid by the boron-nitrogen co-doped carbon nanotubes: Insights into peroxymonosulfate adsorption and activation. Separation and Purification Technology. 2021; 259: 118196. https://doi.org/10.1016/j.seppur.2020.118196

26. Zhou Q., Wu J., Pan Z., Kong X., Cui Z., Wu D., Hu G. Pt supported on boron, nitrogen co-doped carbon nanotubes (BNC NTs) for effective methanol electrooxidation. International Journal of Hydrogen Energy. 2020; 45(58): 33634—33640. https://doi.org/10.1016/j.ijhydene.2020.09.056

27. Ramadoss M., Chen Y., Hu Y., Li W., Wang B., Zhang X., Wang X., Yu B. Threedimensional Ni/Ni3Fe embedded boron-doped carbon nanotubes nanochain frameworks as highly efficient and durable electrocatalyst for oxygen evolution reaction. Journal of Power Sources. 2020; 451: 227753. https://doi.org/10.1016/j.jpowsour.2020.227753

28. Muramatsu H., Kang C.S., Fujisawa K., Kim J.H., Yang C.M., Kim J.H., Hong S., Kim Y.A., Hayashi T. Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications. ACS Applied Nano Materials. 2020; 3(4): 3347—3354. https://doi.org/10.1021/acsanm.0c00075

29. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348): 56—58. https://doi.org/10.1038/354056a0

30. Stephan O., Ajayan P.M., Colliex C., Redlich Ph., Lambert J.M., Bernier P., Lefin P. Doping graphitic and carbon nanotube structures with boron and nitrogen. Science. 1994; 266(5191): 1683—1685. https://doi.org/10.1126/science.266.5191.1683

31. Wang B., Ma Y., Wu Y., Li N., Huang Y., Chen Y. Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon. 2009; 47(8): 2112—2115. https://doi.org/10.1016/j.carbon.2009.02.027

32. Guo T., Nikolaev P., Thess A., Colbert D.T., Smalley R.E. Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters. 1995; 243(1-2): 49—54. https://doi.org/10.1016/0009-2614(95)00825-O

33. Gai P.L., Odile S., McGuire K., Rao A.M., Dresselhaus M.S., Dresselhaus G., Colliex C. Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry. 2004; 14(4): 669—675. https://doi.org/10.1039/b311696d

34. Blackburn J.L., Yan Y., Engtrakul C., Parilla P.A., Jones K., Gennett T., Dillon A.C., Heben M.J. Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique. Chemistry of Materials. 2006; 18(10): 2558—2566. https://doi.org/10.1021/cm060192i

35. Lin Y., Wu S., Shi W., Zhang B., Wang J., Kim Y.A., Endo M., Su D.S. Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications. 2015; 51(66): 13086—13089. https://doi.org/10.1039/C5CC01963J

36. Fujisawa K., Hayashi T., Endo M., Terrones M., Kim J.H., Kim Y.A. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale. 2018; 10(26): 12723—12733. https://doi.org/10.1039/C8NR02323A

37. Chiang W.H., Chen G.L., Hsieh C.Y., Lo S.C. Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Advances. 2015; 5(13): 97579—97588. https://doi.org/10.1039/C5RA20664B

38. Leu Y.A., Yeh M.H., Lin L.Y., Li T.J., Chang L.Y., Shen S.Y., Li Y.S., Chen G.L., Chiang W.H., Lin J.J., Ho K.C. Thermally stable boron-doped multiwalled carbon nanotubes as a Pt-free counter electrode for dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering. 2017; 5(1): 537—546. https://doi.org/10.1021/acssuschemeng.6b01895

39. Ayala P., Rümmeli M.H., Gemming T., Kauppinen E., Kuzmany H., Pichler T. CVD growth of single-walled B-doped carbon nanotubes. Physica Status Solidi B: Basic Solid State Physics. 2008; 245(10): 1935—1938. https://doi.org/10.1002/pssb.200879641

40. Lyu S.C., Han J.H., Shin K.W., Sok J.H. Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon. 2011; 49(5): 1532—1541. https://doi.org/10.1016/j.carbon.2010.12.012

41. Tsierkezos N.G., Ritter U., Thaha Y.N., Downing C., Szroeder P., Scharff P. Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid. Microchimica Acta. 2016; 183(1): 35—47. https://doi.org/10.1007/s00604-015-1585-6

42. Preston C., Song D., Taillon J., Cumings J., Hu L. Boron-doped few-walled carbon nanotubes: novel synthesis and properties. Nanotechnology. 2016; 27(44): 445601. https://doi.org/10.1088/0957-4484/27/44/445601

43. Tomita K., Kawakami N., Aozasa A., Aida K., Ueno K. Synthesis of doped carbon nanotubes by CVD using NiB catalysts. 2016 IEEE International Interconnect Technology Conference. Advanced Metallization Conference (IITC/AMC); 2016: 198—199. https://doi.org/10.1109/IITC-AMC.2016.7507730

44. Sharma A., Patwardhan A., Dasgupta K., Joshi J.B. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition. Chemical Engineering Science. 2019; 207: 1341—1352. https://doi.org/10.1016/j.ces.2019.06.030

45. Laube P. Fundamentals: Doping: n-and p-semiconductors. Semiconductor Technology from A to Z. 2018: 1–3. https://www.halbleiter.org/en/fundamentals/doping/

46. Wirtz L., Rubio A. Band structure of boron doped carbon nanotubes. In: AIP Conference Proceedings. 2003; 685(1): 402—405. https://doi.org/10.1063/1.1628059

47. Bittencourt C., Ewels C., Llobet E. (eds.). Nanoscale materials for warfare agent detection: Nanoscience for security. Springer; 2019. https://doi.org/10.1007/978-94-024-1620-6

48. Rezania H. The effect of boron doping on the thermal conductivity of zigzag carbon nanotubes. International Journal of Modern Physics B. 2015; 29(5): 1550025. https://doi.org/10.1142/S0217979215500253

49. Williams G., Calvo J.A., Faili F., Dodson J., Obeloer T., Twitchen D.J. Thermal conductivity of electrically conductive highly boron doped diamond and its applications at high frequencies. In: 17th IEEE Intersociety conference on thermal and thermomechanical phenomenings in electronic systems (iTHERM). USA: IEEE; 2018: 235—239. https://doi.org/10.1109/ITHERM.2018.8419493

50. Zhao Y., Yang L., Chen S., Wang X., Ma Y., Wu Q., Jiang Y., Qian W., Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? Journal of the American Chemical Society. 2013; 135(4): 1201—1204. https://doi.org/10.1021/ja310566z

51. Yu X., Han P., Wei Z., Huang L., Gu Z., Peng S., Ma J., Zheng G. Boron-doped graphene for electrocatalytic N2 reduction. Joule. 2018; 2(8): 1610—1622. https://doi.org/10.1016/j.joule.2018.06.007

52. Viswanathan B., Sankaran M. Hetero-atoms as activation centers for hydrogen absorption in carbon nanotubes. Diamond and Related Materials. 2009; 18(s2-3): 429—432. https://doi.org/10.1016/j.diamond.2008.10.002

53. Yurum Y., Taralp A., Veziroglu T.N. Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy. 2009; 34(9): 3784—3798. https://doi.org/10.1063/1.1514191

54. Sreedhar I., Kamani K.M., Kamani B.M., Reddy B.M., Venugopal A.A Bird’s eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable Energy Reviews. 2018; 91: 838—860. https://doi.org/10.1016/j.rser.2018.04.028

55. Oh G.H., Park C.R. Preparation and characteristics of ricestraw-based porous carbons with high adsorption capacity. Fuel. 2002; 81(3): 327—336. https://doi.org/10.1016/S0016-2361(01)00171-5

56. Wu H., Wexler D., Ranjbartoreh A.R., Liu H., Wang G. Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage. International Journal of Hydrogen Energy. 2010; 35(12): 6345—6349. https://doi.org/10.1016/j.ijhydene.2010.03.103

57. Ren J., Musyoka N.M., Langmi H.W., Mathe M., Liao S. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy. 2017; 42(1): 289—311. https://doi.org/10.1016/j.ijhydene.2016.11.195

58. Balderas-Xicohtencatl R., Schlichtenmayer M., Hirscher M. Volumetric hydrogen storage capacity in metal-organic frameworks. Energy Technology. 2018; 6(3): 578—582. https://doi.org/10.1002/ente.201700636

59. Pachfule P., Acharjya A., Roeser J., Langenhahn T., Schwarze M., Schomacker R., Thomas A., Schmid J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society. 2018; 140(4): 1423—1427. https://doi.org/10.1021/jacs.7b11255

60. Xu C., Hu M., Wang Q., Fan G., Wang Y., Zhang Y., Gao D., Bi J. Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane. Dalton transactions. 2018; 47(8): 2561—2567. https://doi.org/10.1039/C7DT04549B

61. Wang L., Chen X., Du H., Yuan Y., Qu H., Zou M. First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene. Applied Surface Science. 2018; 427(А): 1030—1037. https://doi.org/10.1016/j.apsusc.2017.08.126

62. Sharma A., Dasgupta K., Banerjee S., Patwardhan A., Srivastava D., Joshi J.B. In-situ nitrogen doping in carbon nanotubes using a fluidized bed reactor and hydrogen storage behavior of the doped nanotubes. International Journal of Hydrogen Energy. 2017; 42(15): 10047—10056. https://doi.org/10.1016/j.ijhydene.2017.01.160

63. Cheng Y., Tian Y., Fan X., Liu J., Yan C. Boron doped multiwalled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reaction in alkaline media. Electrochimica Acta. 2014; 143: 291—296. https://doi.org/10.1016/j.electacta.2014.08.001

64. Handuja S., Srivastava P., Vankar V.D. Structural modification in carbon nanotubes by boron incorporation. Nanoscale Research Letters. 2009; 4(8): 789—793. https://doi.org/10.1007/s11671-009-9315-9

65. Jana D., Chen L.-C., Chen C.-W., Chattopadhyay S., Chen K.-H. A first principles study of the optical properties of BxCy singlewall nanotubes. Carbon. 2007;45(7):1482—1491. https://doi.org/10.1016/j.carbon.2007.03.024

66. Koretsune T., Saito S. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes. Science and Technology of Advanced Materials. 2008; 9(4): 044203—044207. https://doi.org/10.1088/1468-6996/9/4/044203

67. Su W.S., Chang C.P., Lin M.F., Li T.L. Electronic structures and work functions of BC3 nanotubes: a first-principle study. Journal of Applied Physics. 2011; 110(1): 014312—014317. https://doi.org/10.1063/1.3602120

68. Chaudhuri P., Ghosh A., Gusmão M.S., Mota C., Frota H.O. Electronic structure and quantum transport properties of boron and nitrogen substituted graphene monolayers. Current Applied Physics. 2017; 17(7): 957—961. https://doi.org/10.1016/j.cap.2017.04.005

69. Jana D., Sun C., Chen L., Chen K. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science. 2013; 58(5): 565—635. https://doi.org/10.1016/j.pmatsci.2013.01.003

70. Jalili S., Jafari M., Habibian J. Effect of impurity on electronic properties of carbon nanotubes. Journal of the Iranian Chemical Society. 2008; 5: 641—645. https://doi.org/10.1007/BF03246145

71. Liu H.J., Chan C.T. Properties of 4 Å carbon nanotubes from first-principles calculations. Physical Review B. 2002; 66: 115415—115416. https://doi.org/10.1103/PhysRevB.66.115416

72. Jana D., Chen L.-C., Chen C.-W., Chen K.-H. On refractive index and reflectivity of BxCy single wall nanotubes: a first principles approach. Asian Journal of Physics. 2007; 17: 105—109..

73. Liu X.M., Gutiérrez H.R., Eklund P.C. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films. Condensed matter. 2010; 22(33): 334223—334230. https://doi.org/10.1088/0953-8984/22/33/334213

74. An M., Wang H., Yuan Y., Chen D., Ma W., Sharshir S.W., Zhang X. Strong phonon coupling induces low thermal conductivity of one-dimensional carbon boron nanotube. Surfaces and Interfaces. 2022; 28: 101690. https://doi.org/10.1016/j.surfin.2021.101690

75. Li X., Liang D., Wang C., Li Y. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: Performance and mechanisms. Chemosphere. 2021; 275. https://doi.org/10.1016/j.chemosphere.2021.130058

76. Sankaran M., Viswanathan B. The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon. 2006; 44(13): 2816—2821. https://doi.org/10.1016/j.carbon.2006.03.025

77. Sankaran M., Viswanathan B. Hydrogen storage in boron substituted carbon nanotubes. Carbon. 2007; 45(8): 1628—1635. https://doi.org/10.1016/j.carbon.2007.04.011

78. Sankaran M., Viswanathan B., Srinivasamurthy S. Boron substituted carbon nanotubes – How appropriate are they for hydrogen storage? International Journal of Hydrogen Energy. 2008; 33(1): 393—403. https://doi.org/10.1016/j.ijhydene.2007.07.042

79. Ariharan A., Viswanathan B., Nandhakumar V. Hydrogen storage on boron substituted carbon materials. International Journal of Hydrogen Energy. 2016; 41(5): 3527—3536. https://doi.org/10.1016/j.ijhydene.2015.12.169

80. Sawant S.V., Banerjee S., Patwardhan A.W., Joshi J.B., Dasgupta K. Synthesis of boron and nitrogen co-doped carbon nanotubes and their application in hydrogen storage. International Journal of Hydrogen Energy. 2020; 45(24): 13406—13413. https://doi.org/10.1016/j.ijhydene.2020.03.019

81. Liu P., Liang J., Xue R., Du Q., Jiang M. Ruthenium decorated boron-doped carbon nanotube for hydrogen storage: a first-principle study. International Journal of Hydrogen Energy. 2019; 44(51): 27853—27861. https://doi.org/10.1016/j.ijhydene.2019.09.019

82. Ni M.Y., Zeng Z., Ju X. First-principles study of metal atom adsorption on the boron-doped carbon nanotubes. Microelectronics Journal. 2009; 40(4-5): 863—866. https://doi.org/10.1016/j.mejo.2008.11.021

83. Pukazhselvan D., Gupta B.K., Srivastava A., Srivastava O.N. Investigations on hydrogen storage behavior of CNT doped NaAlH4. Journal of Alloys and Compounds. 2005; 403(1-2): 312—317. https://doi.org/10.1016/j.jallcom.2005.05.008

84. Mishra P.R., Pukazhselvan D., Hudson M.S.L., Pandey S.K., Srivastava O.N. Hydrogen energy in Indian context and R&D efforts at Banaras Hindu University. International Journal of Environmental Studies. 2007; 64(6): 761—776. https://doi.org/10.1080/00207230701775581

85. Hudson M.S.L., Dubey P.K., Pukazhselvan D., Pandey S.K., Singh R.K., Raghubanshi H., Shahi R.R., Srivastava O.N. Hydrogen energy in changing environmental scenario: Indian context. International Journal of Hydrogen Energy. 2009; 34(17): 7358—7367. https://doi.org/10.1016/j.ijhydene.2009.05.107

86. Liu Y., Ren Z., Zhang X., Jian N., Yang Y., Gao M., Pan H. Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications. Energy Technology. 2018; 6(3): 487—500. https://doi.org/10.1002/ente.201700517

87. Lin K.S., Mai Y.J., Li S.R., Shu C.W., Wang C.H. Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. Nanomaterials. 2012(special): 1—12. https://doi.org/10.1155/2012/939683

88. Bhatnagar A., Pandey S.K., Dixit V., Shukla V., Shahi R.R., Shaz M.A., Srivastava O.N. Catalytic effect of carbon nanostructures on the hydrogen storage properties of MgH2–NaAlH4 composite. International Journal of Hydrogen Energy. 2014; 39(26): 14240—14246. https://doi.org/10.1016/j.ijhydene.2014.04.179

89. Kang J., Zhang S., Zhang Q., Wang Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angewandte Chemie – International Edition. 2009: 48(14): 2565—2568. https://doi.org/10.1002/anie.200805715

90. Li Y.H., Hung T.H., Chen C.W. A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon. 2009; 47(3): 850—855. https://doi.org/10.1016/j.carbon.2008.11.048

91. Ai P., Tan M., Yamane N., Liu G., Fan R., Yang G., Yoneyama Y., Yang R., Tsubaki N. Synergistic effect of boron-doped carbon nanotubes supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol. Chemistry – A European Journal. 2017; 23(34): 8252—8261. https://doi.org/10.1002/chem.201700821

92. Cao Y., Yu H., Tan J., Peng F., Wang H., Li J., Zheng W., Wong N.B. Nitrogen-, phosphorous-and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon. 2013; 57: 433—442. https://doi.org/10.1016/j.carbon.2013.02.016

93. Galiote N.A., de Azevedo D.C., Oliveira O.N., Huguenin F. Investigating the kinetic mechanisms of the oxygen reduction reaction in a nonaqueous solvent. Journal of Physical Chemistry C. 2014; 118(38): 21995—22002. https://doi.org/10.1021/jp5053584

94. Katsounaros I., Schneider W.B., Meier J.C., Benedikt U., Biedermann P.U., Cuesta A., Auer A.A., Mayrhofer K.J.J. The impact of spectator species on the interaction of H2O2 with platinum – implications for the oxygen reduction reaction pathways. Physical Chemistry Chemical Physics. 2013; 15(21): 8058—8068. https://doi.org/10.1039/C3CP50649E

95. Dai L., Xue Y., Qu Li, Choi H.J., Baek J.B. Metal-free catalysts for oxygen reduction reaction. Chemical reviews. 2015; 115(11): 4823—4892. https://doi.org/10.1021/cr5003563

96. Yang L., Jiang S., Zhao Y.U., Zhu L., Chen S., Wang X., Wu Q., Ma J., Ma Y., Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition. 2011; 50(31): 7132—7135. https://doi.org/10.1002/anie.201101287

97. Cheng Y., Tian Y., Fan X., Liu J., Yan C. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reaction in alkaline media. Electrochimica Acta. 2014; 143: 291—296. https://doi.org/10.1016/J.ELECTACTA.2014.08.001

98. Li T.J., Yeh M.H., Chiang W.H., Li Y.S., Chen G.L., Leu Y.A., Tien T.C., Lo S.C., Lin L.Y., Lin J.J., Ho K.C. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors and Actuators B-chemical. 2017; 248: 288—297. https://doi.org/10.1016/j.snb.2017.03.118

99. Wang S., Cochell T., Manthiram A. Boron-doped carbon nanotube-supported Pt nanoparticles with improved CO tolerance for methanol electro-oxidation. Physical Chemistry Chemical Physics. 2012; 14(40): 13910—13913. https://doi.org/10.1039/c2cp42414b

100. Park S.J., Park J.M. Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes. Current Applied Physics. 2012; 12(5): 1248—1251. https://doi.org/10.1016/j.cap.2012.02.057

101. Cheng Y., Tian Y., Tsang S.W., Yan C. Ag nanoparticles on boron doped multi-walled carbon nanotubes as a synergistic catalysts for oxygen reduction reaction in alkaline media. Electrochimica Acta. 2015; 174: 919—924. https://doi.org/10.1016/j.electacta.2015.05.183

102. Kou Z., Guo B., He D., Zhang J., Mu S. Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction. ACS Energy Letters. 2018; 3(1): 184—190 https://doi.org/10.1021/acsenergylett.7b01133

103. Talla J.A. First principles modeling of boron-doped carbon nanotube sensors. Physica B-condensed Matter. 2012; 407(6): 966—970. https://doi.org/1010.1016/j.physb.2011.12.120

104. Adjizian J.J., Leghrib R., Koós, A.A., Suarez-Martinez I., Crossley A., Wagner P., Grobert N., Llobet E., Ewels C.P. Boron-and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon. 2014; 66: 662—673. https://doi.org/10.1016/j.carbon.2013.09.064

105. Wang R., Zhang D., Zhang Y., Liu C. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. Journal of Physical Chemistry B. 2006; 110(37): 18267—18271. https://doi.org/10.1021/jp061766+

106. Zhang Y., Zhang Y., Zhang D., Liu C. Novel chemical sensor for cyanides: borondoped carbon nanotubes Journal of Physical Chemistry B. 2006; 110(10): 4671—4674. https://doi.org/10.1021/jp0602272

107. Chen X., Chen J., Deng C., Xiao C., Yang Y., Nie Z., Yao S. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta. 2008; 76(4): 763—767. https://doi.org/10.1016/j.talanta.2008.04.023

108. Deng C., Chen J., Chen X., Xiao C., Nie L., Yao S. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosensors & Bioelectronics. 2008; 23(8): 1272—1277. https://doi.org/10.1016/j.bios.2007.11.009

109. Dyachkov P.N., Kutlubaev D.Z., Makaev D.V. Electronic structure of carbon nanotubes with point impurity. Journal of Inorganic Chemistry. 2011; 56(8): 1371—1375. https://doi.org/10.1134/S0036023611080146

110. D’yachkov P.N., Kutlubaev D.Z., Makaev D.V. Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities. Physical Review B. 2010; 82: 035426. https://doi.org/10.1103/PHYSREVB.82.035426

111. Deng C., Chen J., Chen X., Wang M., Nie Z., Yao S. Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochimica Acta. 2009; 54(12): 3298—3302. https://doi.org/10.1016/j.electacta.2008.12.045

112. Deng C., Chen J., Chen X.L., Xiao C., Nie Z., Yao S. Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochemistry Communications. 2008; 10(6): 907—909. https://doi.org/10.1016/j.elecom.2008.04.015

113. Boroznin S.V., Zaporotskova I.V., Boroznina E.V., Polikarpov D.I., Polikarpova N.P. Hydrogenation of boron-carbon nanotubes. Nanoscience and Nanotechnology Letters. 2013; 5(11): 1195—1200. https://doi.org/10.1166/nnl.2013.1694

114. Запороцкова И.В., Борознина Н.П., Борознин С.В., Дрючков Е.С., Бутенко Ю.В., Белоненко М.Б. Углеродные нанотрубки, допированные бором, как основа для двумерных фотонных кристаллов. Известия Российской академии наук. Серия физическая. 2022; 86(6): 801—805. https://doi.org/10.31857/S036767652206031X

115. Борознин С.В., Запороцкова И.В., Перевалова Е.В., Поликарпов Д.И. Электронное строение и характеристики некоторых видов борсодержащих нанотруб. Вестник Волгоградского государственного университета. Серия 10. Инновационная деятельность. 2012; 6: 81—86.

116. Boroznin S.V., Zaporotskova I.V., Boroznina N.P. Study of modification of carbon univariate nanostructures with boron atoms impurities. Journal of Physics: Conference Series. 2021; 1967: 012045. https://doi.org/10.1088/1742-6596/1967/1/012045

117. Boroznin S.V., Zaporotskova I.V., Boroznina E.V., Zaporotskov P.A., Davletova O.A. Migration processes on the surface of carbon nanotubes with substitute boron atoms. Nanosystems: Physics, Chemistry, Mathematics. 2014; 5(1): 107—112. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=nano&paperid=838&option_lang=eng

118. Zaporotskova I.V., Boroznin S.V., Kozhitov L.V., Popkova A.V., Boroznina N.P. On the practicability of sensors based on surface-carboxylated boron-carbon nanotubes. Russian Journal of Inorganic Chemistry. 2019; 64(1): 74—78. https://doi.org/10.1134/S0036023619010029

119. Muramatsu H., Kang C., Fujisawa K., Kim J.H., Yang C., Kim J.H., Hayashi T. Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications. ACS Applied Nano Materials. 2020; 3(4): 3347—3354. https://doi.org/10.1021/acsanm.0c00075


Рецензия

Для цитирования:


Борознин С.В. Углеродные наноструктуры, содержащие примесные атомы бора: особенности получения, физико-химические свойства и возможности применения. Известия высших учебных заведений. Материалы электронной техники. 2022;25(1):64-91. https://doi.org/10.17073/1609-3577-2022-1-64-91

For citation:


Boroznin S.V. Carbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(1):64-91. (In Russ.) https://doi.org/10.17073/1609-3577-2022-1-64-91

Просмотров: 396


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)