Thermal conductivity of single crystals zirconia stabilized by scandium, yttrium, gadolinium, and ytterbium oxides
https://doi.org/10.17073/1609-3577-2022-2-115-124
Abstract
The phase composition and heat conductivity of (ZrO2)0.9(R2O3)0.1 solid solution single crystals have been studied, where R = (Gd, Yb, Sc, Y), (ZrO2)0.9(Sc2O3)0.09(Gd2O3)0.01 and
(ZrO2)0.9(Sc2O3)0.09(Yb2O3)0.01. Single crystals have been grown by directional melt crystallization in a cold skull. The phase composition of the crystals has been studied using X-ray diffraction and Raman spectroscopy. The heat conductivity of the crystals has been studied using the absolute steady-state technique of longitudinal heat flow in the 50—300 K range. We show that at a total stabilizing oxide concentration of 10 mol.% the phase composition of the crystals depends on the ionic radius of the stabilizing cation. The (ZrO2)0.9(Sc2O3)0.1 crystals have the lowest heat conductivity in the 50—300 K range while the (ZrO2)0.9(Gd2O3)0.1 solid solutions have the lowest heat conductivity at 300 K.
Analysis of the experimental data suggests that the heat conductivity of the crystals depends mainly on the phase composition and ionic radius of the stabilizing cation. Phonon scattering caused by the difference in the weight of the co-doping oxide cation has a smaller effect on the heat conductivity.
About the Authors
D. A. AgarkovRussian Federation
2 Acad. Ossipyan Str., Chernogolovka, Moscow District 142432
Dmitrii A. Agarkov — Cand. Sci. (Phys.-Math.), Senior Researcher
M. A. Borik
Russian Federation
38 Vavilov Str., Moscow 119991
Mikhail A. Borik — Cand. Sci. (Eng.), Senior Researcher
G. M. Korableva
Russian Federation
2 Acad. Ossipyan Str., Chernogolovka, Moscow District 142432
Galina M. Korableva — Junior Researcher
A. V. Kulebyakin
Russian Federation
38 Vavilov Str., Moscow 119991
Aleksej V. Kulebyakin — Cand. Sci. (Eng.), Senior Researcher
E. E. Lomonova
Russian Federation
38 Vavilov Str., Moscow 119991
Elena E. Lomonova — Dr. Sci. (Eng.), Head Laboratory
F. O. Milovich
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Filipp O. Milovich — Cand. Sci. (Phys.-Math.), Associate Professor of Department of Materials Science of Semiconductors and Dielectrics
V. A. Myzina
Russian Federation
38 Vavilov Str., Moscow 119991
Valentina A. Myzina — Researcher
P. A. Popov
Russian Federation
14 Bezhitskaya Str., Bryansk 241036
Pavel A. Popov — Dr. Sci. (Phys.-Math.), Professor of the Department of Experimental and Theoretical Physics
N. Yu. Tabachkova
Russian Federation
38 Vavilov Str., Moscow 119991
4-1 Leninsky Ave., Moscow 119049
Nataliya Yu. Tabachkova — Cand. Sci. (Phys.-Math.), Associate Professor of Department of Materials Science of Semiconductors and Dielectrics
References
1. Basu R.N. Materials for solid oxide fuel cells. In: Recent trends in fuel cell science and technology. New York, USA: Springer; 2007: 286—331. https://doi.org/10.1007/978-0-387-68815-2_12
2. Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232
3. Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090
4. Maccauro P.G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20(1): 1—25. https://doi.org/10.1016/s0142-9612(98)00010-6
5. Chevalier J., Liens A., Reveron H., Zhang F., Reynaud P., Douillard T., Preiss L., Sergob V., Lughi V., Swaind M., Courtois N. Forty years after the promise of «ceramic steel?»: Zirconia-based composites with a metal-like mechanical behavior. Journal of the American Ceramic Society. 2020; 103(3): 1482—1513. https://doi.org/10.1111/jace.16903
6. Buzynin A.N., Grishina T.N., Kiselyov T.V., Kosuhina L.A., Kravchenko N.V., Lomonova E.E., Panov V.A., Sidorov M.S., Trishenkov M.A., Filachev A.M. Zirconia-based solid solutions – new materials of photoelectronics. Optical Memory & Neural Networks. 2009; 18: 312—321. https://doi.org/10.3103/S1060992X09040109
7. Hannink R.H.J., Kelly P.M., Muddle B.C. Transformation toughening in zirconia-containing ceramics. Journal of the American Ceramic Society. 2000; 83(3): 461—487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
8. Chevalier J., Gremillard L., Virkar A.V., Clarke D.R. The tetragonal-monoclinic transformation in zirconia: lessons learned and future. Journal of the American Ceramic Society. 2009; 92(9): 1901—1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x
9. Basu B., Vleugels J., Biest O.V.D. Microstructure-toughness-wear relationship of tetragonal zirconia ceramics. Journal of the European Ceramic Society. 2004; 24(7): 2031—2040. https://doi.org/10.1016/S0955-2219(03)00355-8
10. Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062
11. Fèvre M., Finel A., Caudron R., Mévrel R. Local order and thermal conductivity in yttria-stabilized zirconia. II. Numerical and experimental investigations of thermal conductivity. Physical review B. 2005; 72: 104118-1—104118-7. https://doi.org/10.1103/PhysRevB.72.104118
12. Hasselman D.P.H., Johnson L.F., Benten H.D., Syed R., Lee H.M., Swain M.V. Thermal diffusivity and conductivity of dense polycrystalline ZrO2 ceramics: a survey. American Ceramic Society Bulletin. 1987; 66(5): 799—806.
13. Wang X., Guo L., Zhang H., Gong S., Guo H. Structural evolution and thermal conductivities of (Gd1-xYbx)2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings. Ceramics International. 2015; 41(10А): 12621—12625. https://doi.org/10.1016/j.ceramint.2015.06.090
14. Ma W., Gao Y., Zhang J., Bai Y., Jia R., Dong H., Wang R., Bao M. Phase composition, microstructure and thermophysical properties of the Srx(Zr0.9Y0.05Yb0.05)O1.95+x ceramics. Journal of the European Ceramic Society. 2021; 41(4): 2734—2745. https://doi.org/10.1016/j.jeurceramsoc.2020.12.031
15. Lakiza S.M., Hrechanyuk M.I., Red’ko V.P., Ruban O.K., Tyshchenko Ja.S., Makudera A.O., Dudnik O.V. The role of hafnium in modern thermal barrier coatings. Powder Metallurgy and Metal Ceramics. 2021; 60: 70—89. https://doi.org/10.1007/s11106-021-00217-1
16. Yuan J., Zhou X., Dong S., Jiang J., Deng L., Song W., Dingwell D.B., Cao X. Plasma sprayed 18 mol% YO1.5 stabilized hafnia as potential thermal barrier coating. Ceramics International. 2021; 47(10А): 14515—14526. https://doi.org/10.1016/j.ceramint.2021.02.031
17. Cahill D.G., Watson S.K., Pohl R.O. Lower limit to the thermal conductivity of disordered crystals. Physical Review B. 1992; 46: 6131—6140. https://doi.org/10.1103/PhysRevB.46.6131
18. Youngblood G.E., Rice R.W., Ingel R.I. Thermal diffusivity of partially and fully stabilized (yttria) zirconia single crystals. Journal of the American Ceramic Society. 1988; 71(4): 255—260. https://doi.org/10.1111/j.1151-2916.1988.tb05856.x
19. Bisson J.-F., Fournier D., Poulain M., Lavigne O., Meґvrel R. Thermal conductivity of yttria-zirconia single crystals determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x
20. Fan W., Wang Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002
21. Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of Re2O3 (Re = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84: 341—348. https://doi.org/10.1007/s10971-017-4483-z
22. Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface & Coatings Technology. 2020; 403: 126387. https://doi.org/10.1016/j.surfcoat.2020.126387
23. Goff J.P., Hayes W., Hull S., Hutchings M.T., Clausen K.N. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Physical Review B. 1999; 59: 14202—14219. https://doi.org/10.1103/PhysRevB.59.14202
24. Li Y., Gong J., Xie Y., Chen Y. Analysis of non-linear Arrhenius behavior of ionic conduction in cubic zirconia stabilized with yttria and calcia. Journal of Materials Science Letters. 2002; 21: 157—159. https://doi.org/10.1023/A:1014253400747
25. Norberg S.T., Hull S., Ahmed I., Eriksson S.G., Marrocchelli D., Madden P.A., Li P., Irvine J.T.S. Structural disorder in doped zirconias. Part I: the Zr0.8Sc0.2-xYxO1.9 (0.0 ≤ x ≤ 0.2) system. Chemistry of Materials. 2011; 23(6): 1356—1364. https://doi.org/10.1021/cm102808k
26. Marrocchelli D., Madden P.A., Norberg S.T., Hull S. Structural disorder in doped zirconias. Part II: vacancy ordering effects and the conductivity maximum. Chemistry of Materials. 2011; 23(6): 1365—1373. https://doi.org/10.1021/cm102809t
27. Popov P.A., Solomennik V.D., Lomonova E.E., Borik M.A., Myzina V.A. Thermal conductivity of single crystal ZrO2—Y2O3 solid solutions in the temperature range 50–300 K. Physics of the Solid State. 2012; 54(3): 658—661. https://doi.org/10.1134/S1063783412030250
28. Borik M.A., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Myzina V.A., Milovich F.O., Ryabochkina P.A., Tabachkova N.Yu., Zentsova A.I., Popov P.A. Thermal conductivity of cubic ZrO2 single crystals stabilized with yttrium oxide. Physics of the Solid State. 2020; 62(1): 235—239. https://doi.org/10.1134/S1063783420010072
29. Kuzminov Yu.S., Lomonova E.E., Osiko V.V. Refractory materials from a cold crucible. Moscow: Nauka; 2004. 369 p. (In Russ.)
30. Ruh R., Garrett H.J., Domagala R.F., Patel V.A. The system zirconia-scandia. Journal of the American Ceramic Society. 1977; 60(9-10): 399—403. https://doi.org/1010.1111/j.1151-2916.1977.tb15521.x
31. Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics. 1996; 86–88(Part 2): 1131—1149. https://doi.org/10.1016/0167-2738(96)00386-4
32. Chiba R., Yoshimura F., Yamaki J., Ishii T., Yonezawa T., Endou K. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol-gel method. Solid State Ionics. 1997; 104(3-4): 259—266. https://doi.org/10.1016/S0167-2738(97)00423-2
33. Arachi Y., Suzuki M., Asai T., Emura S., Kamiyama T., Izumi F. High-temperature structure of Sc2O3-doped ZrO2. Solid State Ionics. 2004; 175(1-4): 119—121. https://doi.org/10.1016/j.ssi.2004.09.025
34. Huang H., Hsieh C.-H., Kim N., Stebbins J., Prinz F. Structure, local environment, and ionic conduction in scandia stabilized zirconia. Solid State Ionics. 2008; 179(27-32): 1441—1445. https://doi.org/10.1016/j.ssi.2008.02.061
35. Agarkov D.A., Borik M.A., Volkova T.V., Eliseeva G.M., Kulebyakin A.V., Larina N.A., Lomonova E.E., Myzina V.A., Ryabochkina P.A., Tabachkova N.Yu. Phase composition and local structure of scandia and yttria stabilized zirconia solid solution. Journal of Luminescence. 2020; 222: 117170. https://doi.org/10.1016/j.jlumin.2020.117170
36. Borik M.A., Gerasimov M.V., Kulebyakin A.V., Larina N.A., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Sidorova N.V., Tabachkova N.Y. Structure and phase transformations in scandia, yttria, ytterbia and ceria doped zirconia base solid solutions during directional melt crystallization. Journal of Alloys and Compounds. 2020; 844: 156040. https://doi.org/10.1016/j.jallcom.2020.156040
37. Borik M.A., Kulebyakin A.V., Lomonova E.E., Myzina V.A., Popov P.A., Milovich F.O., Tabachkova N.Yu. Thermal conductivity of single-crystal ZrO2-based solid solutions stabilized with scandium and yttrium oxides in the temperature range 50—300 K. Physics of the Solid State. 2018; 60(12): 2672—2677. https://doi.org/10.1134/S1063783418120090
Review
For citations:
Agarkov D.A., Borik M.A., Korableva G.M., Kulebyakin A.V., Lomonova E.E., Milovich F.O., Myzina V.A., Popov P.A., Tabachkova N.Yu. Thermal conductivity of single crystals zirconia stabilized by scandium, yttrium, gadolinium, and ytterbium oxides. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(2):115-124. (In Russ.) https://doi.org/10.17073/1609-3577-2022-2-115-124