Development of a mobile autonomous solar power plant for the needs of agriculture
https://doi.org/10.17073/1609-3577-2022-2-125-136
Abstract
The method of mathematical modeling was used to calculate the temperature distribution in bifacial solar cells. It has been established that the differences in the configurations of the photovoltaic generator lie only in the fact that in a double-sided element, a greater outflow of heat comes from the back side. At the same time, bifacial solar cells demonstrate increased generation of electrical energy. The calculations performed confirm the validity of the choice in favor of two-sided solar cells, which is important when using the developed configuration of a photovoltaic generator. Based on the analysis of the technologies available on the market for photovoltaic conversion of solar energy into electricity, a configuration of a photovoltaic generator based on bifacial heterojunction silicon solar panels was developed. The developed configuration is a moving platform with a photovoltaic system installed on it, equipped with a light flux collection system.
A 2-axis servo system has been developed for the general case of flat mounting of solar modules. The drive with a travel range of 350 mm is installed in the north-south direction, 450 mm — east-west. The task was to find the right shoulder to ensure symmetry and the maximum angle of rotation along the axis. As a result, solutions were determined for the north-south and east-west directions.
In addition, on the basis of a microcontroller, a circuit diagram of a device was developed that provides a given control algorithm for a solar tracker. Also, the scheme includes a GPS/GLONASS module to obtain the exact coordinates of the installation location and time synchronization.
About the Authors
S. Zh. TokmoldinKazakhstan
312 Raiymbek Ave., Almaty 050005;
22 Satbaev Str., Almaty 050013
Serekbol Zh. Tokmoldin — Dr. Sci. (Phys.–Math.), Chief Researcher
V. V. Klimenov
Kazakhstan
312 Raiymbek Ave., Almaty 050005;
22 Satbaev Str., Almaty 050013
Vasiliy V. Klimenov — Chief Technologist
D. V. Girin
Kazakhstan
312 Raiymbek Ave., Almaty 050005;
22 Satbaev Str., Almaty 050013
Dmitriy V. Girin — Junior Researcher
N. A. Chuchvaga
Kazakhstan
312 Raiymbek Ave., Almaty 050005;
22 Satbaev Str., Almaty 050013
Nikolay A. Chuchvaga — PhD (Technical Physics), Senior Researcher
K. P. Aimaganbetov
Kazakhstan
312 Raiymbek Ave., Almaty 050005
22 Satbaev Str., Almaty 050013
Kazybek P. Aimaganbetov — Researcher, Doctoral Student
M. P. Kishkenebaev
Kazakhstan
22 Satbaev Str., Almaty 050013
Musabek P. Kishkenebaev — Master’s Student
S. N. Tarakanova
Kazakhstan
22 Satbaev Str., Almaty 050013
Svetlana N. Tarakanova — Technician
N. S. Tokmoldin
Kazakhstan
312 Raiymbek Ave., Almaty 050005;
22 Satbaev Str., Almaty 050013
Nurlan S. Tokmoldin — PhD., Cand. Sci. (Phys.–Math.), Leading Researcher
References
1. Energy Jordan. EES EAEC. World Energy. https://www.eeseaec.org/energetika-stran-mira/energetika-iordanii (accessed on 17.05.2022).
2. Al-Saidi M., Lahham N. Solar energy farming as a development innovation for vulnerable water basins. Development in Practice. 2019; 29(5): 619—634. https://doi.org/10.1080/09614524.2019.1600659
3. Majewski J., Szymanek M. Technical, economic and legal conditions of the development of photovoltaic generation in Poland. Acta Energetica. 2012; 2(11): 21—26.
4. Swanson R.M. The promise of concentrators. Progress in Photovoltaics: Research and Application. 2000; 8(1): 93—104. https://doi.org/10.1002/(sici)1099-159x(200001/02)8:13.0.co
5. Photovoltaic device performance calibration services. https://pvdpc.nrel.gov/ (accessed on 22.08.2019).
6. Andreev V.M. Concentrator solar photovoltaics. Alʹternativnaâ ènergetika i èkologiâ = Alternative Energy and Ecology (ISJAEE). 2012; (5-6): 40—44. (In Russ.)
7. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Solar photovoltaics: trends and prospects. Fizika i tekhnika poluprovodnikov = Physics and Technology of Semiconductors. 2004; 38(8): 937—948. (In Russ.)
8. Andreev V.M., Grilikhes V.A., Rumyantsev V.D. Photovoltaic conversion of concentrated sunlight. John Wiley & Sons Ltd; 1997. 312 p.
9. Andreev V.M., Khvostikov V.P., Rumyantsev V.D., Paleeva E.V., Shvarts M.Z., Algora C. Proc.of the 24th Linear Accelerator Meeting. Japan, Sapporo. July 7–9, 1999. 147 p.
10. Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (version 42). Progress in Photovoltaics. 2013; 21(5): 827—837. https://doi.org/10.1002/pip.2404
11. Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (version 43). Progress in Photovoltaics. 2014; 22(1): 1—9. https://doi.org/10.1002/pip.2452
12. Sawada T., Terada N., Tsuge S., Baba T., Takahama T., Wakisaka K., Tsuda S., Nakano S. High-efficiency a-Si/c-Si heterojunction solar cell. Proc. of 1994 IEEE 1st World Conf. on Photovoltaic En. Conversion – WCPEC (A Joint Conf. of PVSC, PVSEC and PSEC). Waikoloa, HI, USA. 5–9 Dec., 1994. USA: IEEE; 1994: 1219—1226. https://doi.org/10.1109/WCPEC.1994.519952
13. Yamamoto K. 25.1% efficiency Cu metallized heterojunction crystalline Si solar cell. 25th Int. Photovoltaic Sc. and Eng. Conf. Busan, Korea. November, 2015.
14. Dimroth F., Tibbits T., Niemeyer M., Predan F., Beutel P., Karcher C., Oliva E., Siefer G., Lackner D., Fus-Kailuweit P., Bett A., Krause R., Drazek C., Guiot E., Wasselin J., Tauzin A., Signamarcheix T. Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics. 2015; 6(1): 343—349. https://doi.org/10.1109/PVSC.2015.7356148
15. Geisz JF, Steiner MA, Jain N, Schulte K., France R., McMahon W., Perl E., Friedman D.Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics. 2018; 8(2): 626—632. https://doi.org/10.1109/JPHOTOV.2017.2778567
16. Dimroth F, Tibbits TND, Niemeyer M, et al. Four-junction wafer-bonded concentrator solar cells. IEEE J Photovolt. January, 2016; 6(1): 343—349. https://doi.org/10.1109/JPHOTOV.2015.2501729
17. Sharp develops concentrator solar cell with world’s highest conversion efficiency of 43.5%: Achieved with concentrator triple-junction compound solar cell. Press release Sharp Corporation. May 31, 2012. http://sharp-world.com/corporate/news/120531.html
18. Slade A., Garboushian V. 27.6% efficient silicon concentrator cell for mass production. Techn. Digest. 15th Inter. Photovoltaic Sc. and Eng. Conf. Beijing, October 11–13; 2005. 701 р. https://www.researchgate.net/publication/267779112_276_Efficient_Silicon_Concentrator_Solar_Cells_for_Mass_Production
19. Ward J.S., Ramanathan K., Hasoon F.S., Coutts T.J., Keane J., Contreras M.A., Moriarty T., Noufi R.A. 21.5% efficient Cu (In,Ga) Se2 thin-film concentrator solar cell. Progress in Photovoltaics Research and Application. 2002; 10(1): 41—46. https://doi.org/10.1002/pip.424
20. Chiang C.J., Richards E.H. A twenty percent efficient photovoltaic concentrator module. Proc. IEEE Conf. on Photovoltaic Specialists. Kissimmee, FL, USA. 21–25 May, 1990. IEEE: 861—863. https://doi.org/10.1109/PVSC.1990.111743
21. Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy. 2017; 2(5): 17032. https://doi.org/10.1038/NENERGY.2017.32
22. Tokmoldin N.S., Chuchvaga N.A., Zholdybayev K.S., Terukov E.I., Tokmoldin S.Z., Verbitskii V.N., Titov A.S.The use of solar cells with a bifacial contact grid under the conditions of Kazakhstan. Technical Physics. 2017 ;62(12): 1877—1881. https://doi.org/10.1134/S106378421712026X
23. López A.L., Andreev V.M. (eds.). Silicon concentrator solar cells. In: Concentrator photovoltaics. Vol. 130. Springer series in optical sciences. Heidelberg, Berlin: Springer; 2007: 51—66. https://doi.org/10.1007/978-3-540-68798-6_3
Review
For citations:
Tokmoldin S.Zh., Klimenov V.V., Girin D.V., Chuchvaga N.A., Aimaganbetov K.P., Kishkenebaev M.P., Tarakanova S.N., Tokmoldin N.S. Development of a mobile autonomous solar power plant for the needs of agriculture. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(2):125-136. (In Russ.) https://doi.org/10.17073/1609-3577-2022-2-125-136