Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Carbon nanotubes intercalated by metal atoms with impurity boron atoms as a basis for creating nanowires: theoretical research

https://doi.org/10.17073/1609-3577-2022-2-137-145

Abstract

Carbon nanotubes are one of the currently sought after nanotechnology materials. But the issue of controlling their physicochemical properties, in particular, for creating nanowires by intercalating metal atoms in them, has not yet been fully studied. In this case, there is an effective way to control the electronic energy characteristics — the introduction of impurity atoms. Boron is the most effective among this class of substituting elements. Therefore, the purpose of this article is to study the possibility of internal filling of carbon nanotubes with impurity boron atoms with various metal atoms and to determine the role of its concentration on the phenomena occurring in this case. Using the density functional theory, a model experiment was carried out on the introduction into the cavity of a nanotube of aluminum atoms, as well as alkali metals - lithium, sodium and potassium. The model experiment showed that in all cases the formation of a stable adsorption complex takes place, which can be considered as a model of a nanowire with multiple filling with atoms between the nanotube and metal atoms. At the same time, it was found that during the formation of complex compounds “nanotube — metal atom”, the electron density is redistributed in the system, namely, it is shifted from the B atoms of the metals to the surface of the nanotube, which leads to the formation of additional charge carriers transferred from the donor. Also, an analysis of the electron-energy structure made it possible to establish that the band gap for BC3 nanotubes narrows during the intercalation of metal atoms. This conclusion is extremely important for the needs of nanoelectronics, since it makes it possible to predict the more efficient use of carbon nanotubes with a higher concentration of impurity boron atoms to create nanodevices due to the appearance in them of conducting properties that are different from pure nanostructures, which are expressed in the appearance of additional charge carriers.

About the Authors

S. V. Boroznin
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Sergey V. Boroznin — Cand. Sci. (Phys.-Math.), Associate Professor, Head of the Department of Forensic Science and Physical Materials Science



I. V. Zaporotskova
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies



P. A. Zaporotskov
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Pavel A. Zaporotskov — Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Forensic Science and Physical Materials Science



N. P. Boroznina
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Natalya P. Boroznina — Dr. Sci. (Phys.-Math.), Professor, Department of Forensic Science and Physical Materials Science



M. Govindhasamy
Sathyabama Institute of Science and Technology
India

Tamil Nadu, Chennai, 600119

Murugadoss Govindhasamy — Associate Professor, Researcher, Centre for Nanoscience and Nanotechnology



L. V. Kozhitov
National University of Science and Technology MISiS
Russian Federation

 4-1 Leninsky Ave., Moscow 119049

Lev V. Kozhitov — Dr. Sci. (Eng.), Professor



A. V. Popkova
JSC “Research Institute NPO” LUCH”
Russian Federation

24 Zheleznodorozhnaya Str., Podolsk, 142103

Alena V. Popkova — Cand. Sci. (Eng.), Senior Researcher



References

1. Boroznin S.V., Zaporotskova I.V., Boroznina E.V., Polikarpov D.I., Polikarpova N.P. Hydrogenation of boron-carbon nanotubes. Nanoscience and Nanotechnology Letters. 2013; 5(11): 1195—1200. https://doi.org/10.1166/nnl.2013.1694

2. Iwai Y., Hirose M., Kano R., Kawasaki S., Hattori Y., Takahashi K. Synthesis and structural characterization of alkali-metal intercalated single-walled carbon nanotubes. Journal of Physics and Chemistry of Solids. 2008; 69 (5-6): 1199—1202. https://doi.org/10.1016/j.jpcs.2007.10.035

3. Zhang C., Yan Y., Sheng Zhao Y., Yao J. Synthesis and applications of organic nanorods, nanowires and nanotubes. Annual Reports on the Progress of Chemistry – Section C. 2013; 109: 211—239. https://doi.org/10.1039/c3pc90002a

4. Dasgupta N.P., Sun J., Liu C., Brittman S., Andrews S.C., Lim J., Yang P. 25th anniversary article: Semiconductor nanowires - synthesis, characterization, and applications. Advanced Materials. 2014; 26 (14): 2137—2184. https://doi.org/10.1002/adma.201305929

5. Velea A., Opsomer K., Devulder W., Dumortier J., Fan J., Detavernier C., Govoreanu B. Te-based chalcogenide materials for selector applications. Scientific Reports. 2017; 7(1): 8103. https://doi.org/10.1038/s41598-017-08251-z

6. Matthews P.D., McNaughter P.D., Lewis D.J., O’Brien P. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chemical Science. 2017; 8(6): 4177—4187. https://doi.org/10.1039/c7sc00642j

7. Jing Y., Liu B., Zhu X., Ouyang F., Sun J., Zhou Y. Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications. Nanophotonics. 2020; 9(7): 1675—1694. https://doi.org/10.1515/nanoph-2019-0574

8. Jia T., Feng Z., Guo S., Zhang X., Zhang Y. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Applied Materials and Interfaces. 2020; 12(10): 11852—11864. https://doi.org/10.1021/acsami.9b23297

9. Gao M., Xu Y., Jiang J., Yu S. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews. 2013; 42(7): 2986—3017. https://doi.org/10.1039/c2cs35310e

10. Zaporotskova I.V. Nanotubulene materials: Structure, properties and perspectives. Nano - i Mikrosistemnaya Tekhnika = Nano- and Microsystems Techology. 2005; (10): 7—18. (In Russ.). https://www.elibrary.ru/hevcbn

11. Dul S., Gutierrez B.J.A., Pegoretti A., Alvarez-Quintana J., Fambri L. 3D printing of ABS nanocomposites. comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. Journal of Materials Science and Technology. 2022; 121: 52—66. https://doi.org/10.1016/j.jmst.2021.11.064

12. Xia F., Xia T., Xiang L., Liu F., Jia W., Liang X., Hu Y. High-performance carbon nanotube-based transient complementary electronics. ACS Applied Materials and Interfaces. 2022; 14(10): 12515—12522. https://doi.org/10.1021/acsami.1c23134

13. Faulques E., Kalashnyk N., Slade C.A., Sanchez A.M., Sloan J., Ivanov V.G.. Vibrational and electronic structures of tin selenide nanowires confined inside carbon nanotubes. Synthetic Metals. 2022; 284: 116968. https://doi.org/10.1016/j.synthmet.2021.116968

14. Nagata M., Shukla S., Nakanishi Y., Liu Z., Lin Y., Shiga T., Shinohara H. Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes. Nano Letters. 2019; 19(8): 4845—4851. https://doi.org/10.1021/acs.nanolett.8b05074

15. Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering Journal. 2022; 427. https://doi.org/10.1016/j.cej.2021.131616

16. Dyachkov P.N., Kutlubaev D.Z., Makaev D.V. Electronic structure of carbon nanotubes with point impurity. Journal of Inorganic Chemistry. 2011; 56(8): 1371—1375. https://doi.org/10.1134/S0036023611080146

17. D’yachkov P.N., Kutlubaev D.Z., Makaev D.V. Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities. Physical Review B. 2010; 82: 035426. https://doi.org/10.1103/physrevb.82.035426

18. Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boron-carbon BC5 nanotube with amine group as a sensor device element: Theoretical research. Russian Microelectronics. 2021; 50(8): 644—648. https://doi.org/10.1134/S1063739721080096

19. Zaporotskova I.V., Dryuchkov E.S., Vilkeeva D.E. Surface carboxylation of a boron-carbon bc5 nanotube in the development of sensor devices. Key Engineering Materials. 2021; 887: 23—27. https://doi.org/10.4028/www.scientific.net/KEM.887.23

20. Zaporotskova I.V., Prokofyeva E.V., Zaporotskova N.P., Prokofyeva O.Y., Boroznin S.V. Nanowire on base of carbon nanotubes intercalated of light and transition metal atoms. Fizika volnovykh protsessov i radiotekhnicheskiye sistemy. 2010; 13(4): 87—95. (In Russ.). https://www.elibrary.ru/ncvhkv

21. Boroznin S.V., Perevalova E.V., Zaporotskova I.V., Polikarpov D.I. Electronic structure and characteristics of some types of boron containing nanotubes. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 10: Innovatsionnaya deyatelʹnostʹ. 2012; (6): 81—86. (In Russ.). https://www.elibrary.ru/peuepl

22. Boroznin S.V., Streltsova D.V., Zaporotskova I.V. Investigation of BC5 nanotube interaction with alkaline metal atoms. AIP Conference Proceedings. 2019; 2174: 020011. https://doi.org/10.1063/1.5134162


Review

For citations:


Boroznin S.V., Zaporotskova I.V., Zaporotskov P.A., Boroznina N.P., Govindhasamy M., Kozhitov L.V., Popkova A.V. Carbon nanotubes intercalated by metal atoms with impurity boron atoms as a basis for creating nanowires: theoretical research. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(2):137-145. (In Russ.) https://doi.org/10.17073/1609-3577-2022-2-137-145

Views: 502


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)