Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Calculation of the Kapitza resistance at the silicon - alpha–quartz interface for various temperatures

https://doi.org/10.17073/1609-3577-2021-4-217-221

Abstract

When considering the thermal processes of multilayer nanostructures, a significant part of the energy is dissipated at the boundaries of the layers; to take this factor into account, the Kapitza resistance is used in the simulation. In this study, we calculate the thermal resistance at the Si/SiO2 interface (alpha-quartz) structures for the temperature range up to 567 K. The calculations are carried out based on the acoustic and diffuse mismatch models. The results obtained, in particular, can be used in constructing models of heat transfer in microelectronics.

About the Authors

K. K. Abgaryan
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Aviation Institute (National Research University)
Russian Federation

44-2 Vavilova Str., Moscow 119333;

4 Volokolamskoe Highway, Moscow 125993

Karine K. Abgaryan — Dr. Sci. (Phys.-Math.), Chief Researcher, Head of Department (1), Head of Department (2)



I. S. Kolbin
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Russian Federation

44-2 Vavilova Str., Moscow 119333

Ilya S. Kolbin — Cand. Sci. (Phys.-Math.), Researcher



References

1. Khvesyuk V.I., Skryabin A.S. Thermal conductivity of nanostructures. High Temperature. 2017; 55(3): 428—450. https://doi.org/10.1134/S0018151X17030129

2. Abgaryan K.K., Kolbin I.S. Calculation of the effective thermal conductivity of a superlattice based on the Boltzmann transport equation using first-principle calculations. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(3): 190—196. (In Russ.). https://doi.org/10.17073/1609-3577-2019-3-190-196

3. Khvesyuk V.I., Liu B., Barinov A.A. A new approach to calculation of the Kapitza conductance between solids. Technical Physics Letters. 2020; 46(10): 983—987. https://doi.org/10.1134/S1063785020100065

4. Kapitza P. The study of heat transfer in helium II. Journal of Physics USSR. 1941; 4(1–6): 181—210.

5. Swartz E.T., Pohl R.O. Thermal boundary resistance. Reviews of Modern Physics. 1989; 61(3): 605—668. https://doi.org/10.1103/RevModPhys.61.605

6. Szymański M. Calculation of the cross-plane thermal conductivity of a quantum cascade laser active region. Journal of Physics D: Applied Physics. 2011; 44(8). 085101. https://doi.org/10.1088/0022-3727/44/8/085101

7. Anderson O.L. A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids. 1963; 24(7): 909—917. https://doi.org/10.1016/0022-3697(63)90067-2

8. Zhao H., Freund J.B. Phonon scattering at a rough interface between two FCC lattices. Journal of Applied Physics. 2009; 105(1): 013515—013515. https://doi.org/10.1063/1.3054383

9. Prasher R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Applied Physics Letters. 2009; 94(4): 041905—041905. https://doi.org/10.1063/1.3075065

10. Ohno I., Harada K., Yoshitomi C. Temperature variation of elastic constants of quartz across the α-β transition. Physics and Chemistry of Minerals. 2006; 33: 1—9. https://doi.org/10.1007/s00269-005-0008-3

11. Nikanorov S.P., Burenkov Yu.A., Stepanov A.V. Elastic properties of silicon. Soviet Physics - Solid State. 1971; 13(10): 2516—2519.

12. Endo R., Fujihara Y. Susa M. Calculation of the density and heat capacity of silicon by molecular dynamics simulation. High Temperatures - High Pressures. 2003; 35/36(5): 505—511. https://doi.org/10.1068/htjr135

13. Deng B., Chernatynskiy A., Khafizov M., Hurley D.H., Phillpot S.R. Kapitza resistance of Si/SiO2 interface. Journal of Applied Physics. 2014; 115: 084910. https://doi.org/10.1063/1.4867047

14. Lampin E., Nguyen Q.-H., Francioso P.A., Cleri F. Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations. Applied Physics Letters. 2012; 100(13): 131906. https://doi.org/10.1063/1.3698325

15. Shichen Deng, Chengdi Xiao, Jiale Yuan, Dengke Ma, Junhui Li, Nuo Yang, Hu He. Thermal boundary resistance measurement and analysis across SiC/SiO2 interface. Applied Physics Letters. 2019: 115(10): 101603. https://doi.org/10.1063/1.5111157


Review

For citations:


Abgaryan K.K., Kolbin I.S. Calculation of the Kapitza resistance at the silicon - alpha–quartz interface for various temperatures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(4):217-221. (In Russ.) https://doi.org/10.17073/1609-3577-2021-4-217-221

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)