Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Accounting of the porosity of the material in the simulation of the time-dependent dielectric breakdown in the metallization system of integrated circuits

https://doi.org/10.17073/1609-3577-2021-4-242-247

Abstract

In this work, simulation modeling of processes of the diffusion of copper ions in low-k dielectric between two neighboring copper lines is performed. It was found that an increase in the diffusion time of an ion in a material with a porosity of 30% and a pore radius of 1 nm (for the input parameters specified in the work) due to an increase in the diffusion path can be estimated at 16%. Moreover, the combined consideration of the effect of an increase in the electric field at the edges of the pores and a decrease in the diffusion activation energy leads to a decrease in the time to breakdown by 26% relatively dense material.

About the Authors

A. A. Orlov
Molecular Electronics Research Institute, JSC; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

6-1 Academician Valieva Str., Moscow, Zelenograd 124460;
9 Institutskiy Lane, Dolgoprudny, Moscow Region 141701

Andrey A. Orlov — Junior Researcher

 



E. A. Ganykina
Molecular Electronics Research Institute, JSC; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

6-1 Academician Valieva Str., Moscow, Zelenograd 124460;
9 Institutskiy Lane, Dolgoprudny, Moscow Region 141701

Ekaterina A. Ganykina — Researcher

 



A. A. Rezvanov
Molecular Electronics Research Institute, JSC; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

6-1 Academician Valieva Str., Moscow, Zelenograd 124460;
9 Institutskiy Lane, Dolgoprudny, Moscow Region 141701

Askar A. Rezvanov — Cand. Sci. (Phys.-Math.), Head of the Laboratory



References

1. International technology roadmap for semiconductors (ITRSTM) interconnect. 2020 Edition. https://irds.ieee.org/editions/2020

2. Maex K., Shamiryan D., Iacopi F., Brongersma S.H., Baklanov M.R., Yanovitskaya Z.S. Low dielectric constant materials for microelectronics. Journal of Applied Physics. 2003; 93(11): 8793—8841. https://doi.org/ 10.1063/1.1567460

3. Lloyd J.R., Murray C.E., Ponoth S., Cohen S., Liniger E. The effect of Cu diffusion on the TDDB behavior in a low-k interlevel dielectrics. Microelectronics Reliability. 2006; 46(9-11): 1643—1647. https://doi.org/ 10.1016/j.microrel.2006.08.003

4. Patent (RU) No. 2486632 C2, IPC H01L 21/768. Valeev A.S., Krasnikov G.J., Gvozdev V.A. Method for manufacturing of improved multilevel copper metallisation using dielectrics with ultra low dielectric constant (ultra low-k). Appl.: 20.07.2011; publ.: 27.06.2013. (In Russ.). https://yandex.ru/patents/doc/RU2486632C2_201306275

5. Huang X., Sukharev V., Qi Z., Kim T., Tan S.X.-D. Physics-based full-chip TDDB assessment for BEOL interconnects. In: Proc. of the 53rd Annual Design Automation Conf. (DAC’16). June 5, 2016; (45): 1—6. https://doi.org/10.1145/2897937.2898062

6. Peng S., Zhou H., Kim T., Chen H.-B., Tan S. Physics-based compact TDDB models for low-k beol copper interconnects with time-varying voltage stressing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2018; 26(2): 239—248. https://doi.org/1010.1109/TVLSI.2017.2764880

7. Groove A.S. Physics and technology of semiconductor devices. NY, USA: Wiley & Sons Inc.; 1999. 388 p.

8. Hwang S.-S., Jung S.-Y., Joo Y.-C. The electric field dependence of Cu migration induced dielectric failure in interlayer dielectric for integrated circuits. Journal of Applied Physics. 2007; 101(7): 074501. https://doi.org/10.1063/1.2714668

9. Achanta R.S., Gill W.N., Plawsky J.L. Predicting the lifetime of copper/barrier/dielectric systems: Insights for designing better barriers for reducing copper ion drift/diffusion into the dielectric. Journal of Applied Physics. 2009; 106(7): 074906. https://doi.org/10.1063/1.3238517

10. Shacham-Diamand Y., Dedhia A., Hoffstetter D., Oldham W.G. Copper transport in thermal SiO2. Journal of the Electrochemical Society. 1993; 140(8): 2427—2432. https://doi.org/10.1149/1.2220837

11. Kuo Y.-L., Lee H.-H., Lee C., Lin J.-C., Shue S.L., Liang M.-S., Daniels B.J. Diffusion of copper in titanium zirconium nitride thin films. Electrochemical and Solid-State Letters. 2004; 7(3): С35—С37. https://doi.org/10.1149/1.1644355


Review

For citations:


Orlov A.A., Ganykina E.A., Rezvanov A.A. Accounting of the porosity of the material in the simulation of the time-dependent dielectric breakdown in the metallization system of integrated circuits. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(4):242-247. (In Russ.) https://doi.org/10.17073/1609-3577-2021-4-242-247

Views: 394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)