Mathematical modeling of the perovskite and double perovskite crystal structures
https://doi.org/10.17073/1609-3577-2021-4-255-259
Abstract
The paper considers the problem of modeling materials with the crystal structure of perovskite and double perovskite. Due to the high complexity of obtaining micro- and nanoscale objects, data on the structure and properties of such materials are especially important. This makes it relevant to use computer modeling to predict the required characteristics of materials. Electronic, magnetic, mechanical and other properties of crystalline substances are determined by the specificity of their structure – the periodicity and symmetry of the lattice. The paper considers compounds with the common chemical formulas ABO3 and A2BB’O6 and the crystal lattice of cubic symmetry type are the structural types Perovskite and Double Perovskite. The model of ion-atomic radii, widely used in modeling various crystal structures, is applied. The application of the annealing simulation algorithm to calculate the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm used in the work makes it possible to calculate the coordinates of the atoms included in the elementary cell of the crystal lattice, the lattice constant and the packing density of atoms in the crystal cell according to the given chemical formula and the spatial symmetry group. The listed structural characteristics can be used for the subsequent determination of the electronic, magnetic, and thermal properties of perovskite-like compounds. The article presents a comparison of the values of the lattice constants obtained as a result of numerical modeling with the data published in open sources.
About the Author
P. A. SechenykhRussian Federation
44-2 Vavilova Str., Moscow 119333
4 Volokolamskoe Highway, Moscow 125993
Polina A. Sechenykh — Junior Researcher (1), Senior Lecturer (2)
References
1. Abgaryan K.K. Multiscale modeling in problems of structural materials science. Moscow: MAKS Press; 2017. 284 p. (In Russ.)
2. Sechenykh P.A. Mathematical modeling of perspective structures of metal oxides. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(4): 268—271. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-268-271
3. Metropolis N., Ulam S. The Monte Carlo Method. Journal of the American Statistical Association. 1949; 44(247): 335—341. https://doi.org/10.2307/2280232
4. Documentation on C#. https://docs.microsoft.com/ru-ru/dotnet/csharp/ (accesses on: 02.11.2019).
5. De Graef M., McHenry M. Structure of materials (2nd ed.). Cambridge University Press; 2012. 767 p.
6. Solodovnikov S.F. Basic terms and concepts of structural crystallography and crystal chemistry. Novosibirsk: INKh SO RAN; 2005. 113 p. (In Russ.)
7. Hahn Th. International tables for crystallography. Vol. A: Space group symmetry. Springer; 2005. 911 p. https://doi.org/10.1107/97809553602060000100
8. Documentation on Entity Framework 6.1.3. https://docs.microsoft.com/ru-ru/ef/ (accesses on: 01.11.2021).
9. Documentation on MS SQL Server. https://docs.microsoft.com/ru-ru/sql/relational-databases/sql-server-guides?view=sql-server-ver15 (accesses on: 01.11.2021).
10. Huheey J.E. Inorganic chemistry. The structure of matter and reactivity. B.D. Stepina, R.A. Lidina (eds.). Moscow: Khimiya; 1987. 696 p. (In Russ.)
11. Crystallography open database. http://www.crystallography.net/cod/ (accesses on: 10.09.2021).
12. Zinenko V.I., Pavlovskii M.S., Shinkorenko A.S. Electronic structure, lattice dynamics, and magnetoelectric properties of double perovskite La2CuTiO6. Physics of the Solid State. 2016; 58(11): 2294—2299. https://doi.org/10.1134/S1063783416110408
13. Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 1964; 136(3B): 864. https://doi.org/10.1103/PhysRev.136.B864
14. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Physical Review. 1965; 140(4A): 1133. https://doi.org/10.1103/PhysRev.140.A1133
Review
For citations:
Sechenykh P.A. Mathematical modeling of the perovskite and double perovskite crystal structures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(4):255-259. (In Russ.) https://doi.org/10.17073/1609-3577-2021-4-255-259