Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

The study of nickel impurity segregation on LSNT perovskite open surfaces by means of ab initio molecular dynamics

https://doi.org/10.17073/1609-3577-2021-4-260-266

Abstract

In this paper, the segregation of the Ni impurity on open surfaces of the doped strontium titanate perovskite is investigated by means of ab initio molecular dynamics method based on the density functional theory and applied to a model periodic cell with stoichiometry La0.5Sr0.5TiO3 (LST).
The performed studies are based on recent experimental observations on the segregation of Ni impurity atoms and their tendency to form clusters at the boundaries of defect structure of La0.2Sr0.7Ni0.1Ti0.9O3-δ (LSNT) perovskite. The results of the first-principles calculations of segregation energy showed that Ni does actively segregate toward the open surfaces. It was found that during segregation, nickel atoms leave the crystal volume to the perovskite surface and rise above its upper layer. Thus, the obtained results confirm the experimental data on the segregation and formation of nickel clusters on open LSNT surfaces.

About the Authors

A. A. Chistyakova
Lomonosov Moscow State University
Russian Federation

1-2 Leninskie Gory, Moscow, 119991

Anna A. Chistyakova — Student, Faculty of Physics,



D. I. Bazhanov
Lomonosov Moscow State University; Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Aviation Institute (National Research University)
Russian Federation

1-2 Leninskie Gory, Moscow, 119991;

44-2 Vavilova Str., Moscow 119333;

4 Volokolamskoe Highway, Moscow 125993

Dmitriy I. Bazhanov — Cand. Sci. (Phys.-Math.), Senior Lecturer, Department of Solid State Physics, Faculty of Physics



References

1. Su D., Xu Q.Y., Zhu J.S., Wang Y.N. Comment on “Model of phase transition induced antiphase boundaries in perovskite and layered perovskite oxides” [Journal of Applied Physics. 2002; 92: 5425]. Journal of Applied Physics. 2004; 95(2): 770—771. https://doi.org/10.1063/1.1633659

2. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Physical Review B. 1976; 13(12): 5188—5192. https://doi.org/10.1103/PHYSREVB.13.5188

3. Han H., Park J., Nam S.Y., Kim K.J., Choi G.M., Parkin S.S.P., Jang H.M., Irvine J.T.S. Lattice strain-enhanced exsolution of nanoparticles in thin films. Nature Communication. 2019; 10(1): 1471. https://doi.org/10.1038/s41467-019-09395-4

4. Wang L.Q., Schaffer B., MacLaren I., Miao S., Craven A.J., Reaney I.M. Atomic scale structure and chemistry of anti-phase boundaries in (Bi0.85Nd0.15)(Fe0.9Ti0.1)O3 ceramics. Journal of Physics: Conference Series. 2012; 371: 012036. https://doi.org/10.1088/1742-6596/371/1/012036

5. Kim K.J., Han H., Defferriere T., Yoon D., Na S., Kim S.J., Dayaghi A.M., Son J., Oh T.-S., Jang H.M., Choi G.M. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. Journal of the American Chemical Society. 2019; 141(18): 7509—7517. https://doi.org/10.1021/jacs.9b02283

6. Du H., Jia C.-L, Koehl A., Barthel J., Dittmann R., Waser R., Mayer J. Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chemistry of Materials. 2017; 29(7): 3164—3173. https://doi.org/10.1021/acs.chemmater.7b00220

7. VASP full version. 04.12.2018. https://sourceforge.net/projects/vasp-full-version/

8. Kresse G., Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physical Review. B: Condensed Matter.1993; 48(17): 13115—13118. https://doi.org/10.1103/physrevb.48.13115

9. Kresse G. Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review. B: Condensed Matter. 1996; 54(16): 11169—11186. https://doi.org/10.1103/PhysRevB.54.11169

10. Zhou X., Yan N., Chuang K., Luo J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Advances. 2014; 4: 118—131. https://doi.org/10.1039/C3RA42666A

11. March N., Cohn V., Vashishta P., Lundqvist S., Williams A., Bart W., Lang N. Theory of the inhomoheneous electron gas. NY, USA; Great Britain, London: Plenum Press; 1983. 400 p. (Russ. Transl.: March N., Cohn V., Vashishta P., Lundqvist S., Williams A., Bart W., Lang N. Teoriya neodnorodnogo ehlektronnogo gaza. Moscow: Mir; 1987. 400 р.)

12. Kohn W. Nobel lecture: electronic structure of matter – wave functions and density functionals. Reviews of Modern Physics. 1999; 71: 1253—1266. https://doi.org/10.1103/RevModPhys.71.1253

13. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996; 77: 3865—3868. https://doi.org/10.1103/PhysRevLett.77.3865

14. Blöchl P.E. Projector augmented-wave method. Physical Review. B. Condensed Matter. 1994; 50(24): 17953—17979. https://doi.org/10.1103/PHYSREVB.50.17953

15. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Physical Review B. 1976; 13(12): 5188–5192. https://doi.org/10.1103/PHYSREVB.13.5188

16. Blöchl P.E., Jepsen O., Andersen O.K. Improved tetrahedron method for Brillouin-zone integrations. Physical Review. B. Condensed Matter. 1994; 49(23): 16223–16233. https://doi.org/10.1103/PHYSREVB.49.16223

17. Kwon O., Sengodan S., Kim K., Kim G., Jeong H.Y., Shin J.,. Ju Y.-W, Han J.W., Kim G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nature Communications. 2017; 8: 15967. https://doi.org/10.1038/ncomms15967

18. Ding Y., Liang D.D. A model of phase transition induced antiphase boundaries in perovskite and layered. Journal of Applied Physics. 2002; 92: 5425—5428. https://doi.org/10.1063/1.1510563


Review

For citations:


Chistyakova A.A., Bazhanov D.I. The study of nickel impurity segregation on LSNT perovskite open surfaces by means of ab initio molecular dynamics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(4):260-266. (In Russ.) https://doi.org/10.17073/1609-3577-2021-4-260-266

Views: 378


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)