Influence of calcium on specific heat capacity and changes in thermodynamic functions of aluminum conductor alloy AlTi0.1
https://doi.org/10.17073/1609-3577-2023-1-76-84
EDN: GADSQM
Abstract
Aluminum in terms of electrical conductivity among all known metals ranks fourth after silver, copper and gold. The electrical conductivity of annealed aluminum is approximately 62% IACS of the electrical conductivity of annealed standard copper, which at 20 °C. is taken as 100% IACS. However, due to its low specific gravity, aluminum has a conductivity per unit mass 2 times greater than copper. This property of aluminum gives us an idea of the economic viability of using it as a material for conductors. With equal conductivity (the same length), the aluminum conductor has a cross-sectional area 60% larger than copper, and its mass is only 48% of the mass of copper. In most cases, in electrical engineering, the use of aluminum as a conductor is difficult, and often simply impossible due to its low mechanical strength. An increase in the mechanical strength of aluminum is possible due to the introduction of alloying additives, i.e. creating alloys. In such a case, the mechanical strength increases, causing a noticeable decrease in electrical conductivity. The heat capacity of the aluminum conductor alloy AlTi0.1 (Al + 0.1 wt.% Ti) with calcium in the “cooling” mode was determined from the known heat capacity of the standard aluminum sample. Equations are obtained that describe the cooling rates of specimens made from an aluminum conductor alloy AlTi0.1 with calcium and a reference. Based on the calculated values of the cooling rates of the samples, the equations for the temperature dependence of the heat capacities of the alloys and the standard were formed. The temperature dependences of changes in enthalpy, entropy, and Gibbs energy for the aluminum alloy AlTi0.1 with calcium are calculated by integrating the specific heat capacity. The heat capacity, enthalpy, and entropy of the AlTi0.1 alloy decrease with increasing calcium concentration, and increase with increasing temperature, while the value of the Gibbs energy has an inverse relationship.
About the Authors
I. N. GanievTajikistan
10 Academicians Radjabov’s Ave., Dushanbe 734042
Izatullo N. Ganiev — Dr. Sci. (Chem.), Academician of the National Academy of Sciences of Tajikistan, Professor of the Department of Technology of Chemical Production
R. J. Faizulloev
Tajikistan
73 N. Khusrava Str., Bokhtariyon, Kushanyan District, Khatlon Region 733036
Rustam Dz. Fayzulloev — Lecturer at the Department of Energy Systems and Networks
F. Sh. Zokirov
Tajikistan
10 Academicians Radjabov’s Ave., Dushanbe 734042
Furkatshokh Sh. Zokirov — Ph.D. (Eng.), Lecturer of the Department of Physics
A. G. Safarov
Tajikistan
299/1 Sadriddin Ayni Ave., Dushanbe 734063
Amirsho G. Safarov — Dr. Sci. (Eng.), Associate Professor, Leading Researcher
References
1. Zakharov M.V., Lisovskaya T.D. Influence of various elements on the electrical conductivity, hardness and recrystallization temperature of AB000 aluminum. Izvestiya. Non-Ferrous Metallurgy. 1965; (3): 51—55. (In Russ.)
2. Maltsev M.V. Modification of the structure of metals and alloys. Moscow: Metallurgiya; 1984. 282 p. (In Russ.)
3. Zhang L., Palm M., Stein F., Sauthoff G. Formation of lamellar microstructures Al-rich TiAl alloys between 900 to 1100 °C. Intermetallics. 2001; 9(3): 229—238. https://doi.org/10.1016/S0966-9795(00)00125-4
4. Palm M., Zhang L.S., Stein F., Sauthoff G. Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. Intermetallics. 2002; 10(6): 523—540. https://doi.org/10.1016/S0966-9795(02)00022-5
5. Nakano T., Negishi A., Hayashi K., Umakoshi Y. Ordering process of Al5Ti3, h-Al2Ti and r-Al2Ti with FCC-based long-period superstructures in rapidly solidified Al-rich TiAl alloys. Acta Materialia. 1999; 47(4): 1091—1104. https://doi.org/10.1016/S1359-6454(99)00009-9
6. Witusiewicz V.T., Bondar A.A., Hecht U., Rex S., Velikanova T.Ya. The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti. Journal of Alloys and Compounds. 2008; 465(1–2): 64—77. https://doi.org/10.1016/j.jallcom.2007.10.061
7. Kutsova V.Z., Pogrebna N.Y. Khokhlova T.S. Aluminum and alloys based on it. Dnіpropetrovs’k: Porogi; 2004. 135 p. (In Ukr.)
8. Ono A. Solidification of metals. Moscow: Metallurgy; 1980. 147 p. (Russ. Transl.: Ono A. Zatverdevanie metallov. Moscow: Metallurgiya; 1980. 147 p.)
9. Benci J.E., Ma J.C., Feist T.P. Evaluation of the intermetallic compound Al2Ti for elevated-temperature applications. Materials Science and Engineering: A. 1995; 192–193(Pt 1): 38—44. https://doi.org/10.1016/0921-5093(94)03201-7
10. Wu Z.L., Pope D.P. Ll2Al3Ti-based alloys with Al2Ti precipitates – I. Structure and stability of the precipitates. Acta Metallurgica et Materialia. 1994; 42(2): 509—518. https://doi.org/10.1016/0956-7151(94)90505-3
11. Wu Z.L., Pope D.P. Ll2Al3Ti-based alloys with Al2Ti precipitates – II. Deformation behavior of single crystals. Acta Metallurgica et Materialia. 1994; 42(2): 519—526. https://doi.org/10.1016/0956-7151(94)90506-1
12. Sturm D., Heilmaier M., Saage H., Paninski M., Schmitz G.J., Drevermann A., Palm M., Stein F., Engberding N., Kelm K., Irsen S. Creep strength of centrifugally cast Al-rich TiAl alloys. Materials Science and Engineering: A. 2009; 510–511: 373—376. https://doi.org/10.1016/j.msea.2008.01.102
13. Demenok A.O., Ganeev A.A., Demenok O.B., Kulakov B.A. The choice of alloying elements for titanium aluminide base alloys. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya = Bulletin of the South Ural State University. Series ‘Metallurgy. 2013; 13(1): 95—102. (In Russ.). https://vestnik.susu.ru/metallurgy/article/viewFile/1544/1501; https://elibrary.ru/qbjhcj
14. Kirov S.A., Kozlov A.V., Saletsky A.M., Kharabadze D.E. Measurement of heat capacity and heat of melting by the method of cooling. Textbook. Moscow: EPT Faculty of Physics, Lomonosov Moscow State University; 2012. 23 p. (In Russ.)
15. Matveev A.N., Kiselev D.F., eds. Bulkin P.S., Popova I.I. General physical workshop. Molecular physics. Moscow: Publishing House of Moscow State University; 1988. 215 p. (In Russ.)
16. Matveev A.N. Molecular physics. Moscow: Binom. Laboratoriya znanii; 2010. 368 p. (In Russ.)
17. Sivukhin D.V. General course of physics. In 5 vol. Vol. 2. Thermodynamics and molecular physics. Moscow: Fizmatlit; 2005. 544 p. (In Russ.)
18. Kikoin I.K., Kikoin A.K. Molecular physics. St. Petersburg: Lan’; 2008. 484 p. (In Russ.)
19. Ganiev I.N., Mulloeva N.M., Nizomov Z., Obidov F.U. Temperature dependence of the specific heat and thermodynamic functions of alloys of the Pb-Ca system. Teplofizika vysokikh temperatur = High Temperature. 2014; 52(1): 138—140. (In Russ.). https://doi.org/10.7868/S0040364414010098
20. Zokirov F.Sh., Ganiev I.N., Sangov M.M., Ibrokhimov N.F. Effect of calcium on the temperature dependence of the heat capacity and thermodynamic function variability of the AK12M2 alloy. Teplofizika vysokikh temperatur = High Temperature. 2018; 56(6): 867—872. (In Russ.). https://doi.org/10.1134/S0018151X18060093
21. Ganiev I.N., Otadzhonov S.E., Ibrokhimov N.F., Makhmudov M. Temperature dependence of the heat capacity and changes in the thermodynamic functions of the strontium alloyed AK1 alloy. Teplofizika vysokikh temperatur = High Temperature. 2019; 57(1): 22—26. (In Russ.). https://doi.org/10.1134/S0040364419010095
22. Ganiev I.N., Safarov A.G., Odinaev F.R., Yakubov U.S., Kabutov K. Temperature dependence of specific heat and thermodynamic functions of Al + 4,5 % Fe alloys doped with tin. Izvestiya. Non-Ferrous Metallurgy. 2019; (1): 50—58. (In Russ.). https://doi.org/10.17073/0021-3438-2019-1-50-58
23. Ganiev I.N., Otajonov S.E., Ibrohimov N.F., Mahmudov M. Temperature dependence of the specific heat and thermodynamic functions AК1М2 alloy, doped strontium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018; 21(1): 35—42. (In Russ.). https://doi.org/10.17073/1609-3577-2018-1-35-42
24. Gordov A.N., ed. Gordov A.N., Parfenov V.G., Potyagailo A.Yu. Statistical methods for processing the results of a thermophysical experiment. Leningrad: LITMO-L; 1981. 72 p. (In Russ.)
25. Gerashchenko O.A., Gordov A.N., Lakh V.I., Stadnyk B.I. Temperature measurements. Kiev: Naukova dumka; 1984. 495 p. (In Russ.)
26. Shchukin V.K., ed. Theory and technique of thermophysical experiment. Moscow: Energoatomizdat; 1993. 448 p. (In Russ.)
27. Zinov’ev V.E. Thermophysical properties of metals at high temperatures. Moscow: Metallurgiya; 1984. 384 p. (In Russ.)
Review
For citations:
Ganiev I.N., Faizulloev R.J., Zokirov F.Sh., Safarov A.G. Influence of calcium on specific heat capacity and changes in thermodynamic functions of aluminum conductor alloy AlTi0.1. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(1):76-84. (In Russ.) https://doi.org/10.17073/1609-3577-2023-1-76-84. EDN: GADSQM