Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Determination of stoichiometry deviation in wide-band II-VI semiconductors on the basis of equilibrium vapor phase composition

https://doi.org/10.17073/1609-3577-2022-2-107-114

Abstract

A method of determining stoichiometry deviation in cadmium and zinc chalcogenides that is based on the temperature dependence of the ratio of components partial pressures during evaporation of solid compounds in a limited volume has been suggested. The new method differs from methods implying the collection of excessive component during evaporation in large volumes. The method includes measuring vapor phase components partial pressures during material heating to above 800 K, solving a set of material balance equations and the electric neutrality equation, and calculating the stoichiometry deviation in the initial compound at room temperature. Intrinsic point defect concentrations are calculated using the method of quasichemical reactions. The independent variables in the set of equations are the sought stoichiometry deviation, the partial pressure of the metal and the concentration of free electrons. We show that the parameter of the material balance equation which determines the method’s sensitivity to stoichiometry deviation, i.e., the volume ratio of vapor and solid phases, can be considered constant during heating and evaporation unless this parameter exceeds 50. If the partial pressure is measured based on the optical density of the vapors, then the sensitivity of the method can be increased to not worse than 10-6 at.%.

About the Author

S. P. Kobeleva
National University of Science and Technology MISiS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Svetlana P. Kobeleva — Cand. Sci. (Phys.-Math.), Senior Researcher, Associate Professor 



References

1. Kasap S., Capper P., eds. Isshiki M., Wang J. II-IV semiconductors for optoelectronics: CdS, CdSe, CdTe. In: Springer handbook of electronic and photonic materials. Cham, Switzerland: Springer; 2017: 853—865. https://doi.org/10.1007/978-3-319-48933-9_33

2. Triboulet R., Siffert P. CdTe and related compounds; physics, defects, hetero- and nano-structures, crystal growth, surfaces and applications. Elsevier; 2010. 296 p. https://doi.org/10.1016/C2009-0-17817-0

3. Tumer O.T., Finger M.H., Gordon E.E., Ramsey B.D., Rhiger D.R., Sharma D.P. Test results of preliminary CdZnTe pixel detectors for possible application to HXT on the Constellation-X mission. Proceedings of SPIE. X-ray and Gamma-ray instrumentation for Astronomy XIII. 2004; 5165: 548—554. https://doi.org/10.1117/12.515619

4. Del Sordo S., Abbene L., Caroli E., Mancini A.M., Zappettini A., Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009; 9(5): 3491—3526. https://doi.org/10.3390/s90503491

5. Dvoryankin V.F., Dvoryankina G.G., Ivanov Yu.M., Kudryashov A.A., Petrov A.G. Photovoltaic X-ray detectors based on CdTe crystals with p-n junction. Zhurnal Tekhnicheskoi Fiziki. 2010; 80(7): 156—158. (In Russ.)

6. Tinedert I.E., Pezzimenti F., Megherbi M.L., Saadoune A. Design and simulation of a high efficiency CdS/CdTe solar cell. Optik. 2020; 208: 164112. https://doi.org/10.1016/j.ijleo.2019.164112

7. Bosio A., Rosa G., Romeo N. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy. 2018; 175: 31—43. https://doi.org/10.1016/j.solener.2018.01.018

8. Baines T., Shalvey T.P., Major J.D. Pt 10. CdTe solar cells. In: A comprehensive guide to solar energy systems. Elsevier; 2018: 215—232. https://doi.org/10.1016/B978-0-12-811479-7.00010-5

9. Scheiber C., Giakos G.C. Medical applications of CdTe and CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001; 458(1–2): 12—25. https://doi.org/ 10.1016/S0168-9002(00)01032-9

10. Kroger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland; 1964. 1039 p.

11. Ivanov Y.M. Configuration of the cadmium telluride homogeneity boundaries. Russian Journal of Inorganic Chemistry. 2014; 59(14): 1705—1714. https://doi.org/10.1134/S0036023614140034

12. Avetisov I. Mozhevitina E., Khomyakov A., Avetisov R. Nonstoichiometry of AIIBVI semiconductors. Crystal Research and Technology. 2015; 50(1): 115—123. https://doi.org/10.1002/crat.201400215

13. Avetisov I. Mozhevitina E., Khomyakov A., Khanh T. Universal approach for nonstoichiometry determination in binary chemical compounds. Crystall Reserch Technology. 2015; 50(1): 93—100. https://doi.org/10.1002/crat.201400201

14. Ivanov Yu.M., Yakovleva V.T., Andreychuk A.N., Morozova L.P. The method of concentration of the excess component to determine its concentration in non-stoichiometric compounds. Izvestiya AN SSSR. Neorganicheskie Materialy. 1977; (6): 1082.

15. Zlomanov V.P., Avetisov I.H., Mozhevitina E.N. Physical chemistry of a solid. P-T-x diagrams of phase equilibria. Мoscow: RKhTU im. D.I. Mendeleeva; 2019. 184 p. (In Russ.)

16. Avetisov I.H. Phase equilibria in systems А(II)В(VI). In: High-purity substances. Moscow: Nauchnyi mir; 2018: 704—753. (In Russ.)

17. Rudolph P. Fundamental studies on Bridgman growth of CdTe. Progress in Crystal Growth and Characterization of Materials. 1994; 29(1–4): 275—381. https://doi.org/10.1016/0960-8974(94)90009-4

18. Yellin N., Szapiro Y. Calculation of the partial vapor pressures of tellurium and cadmium over non-stoichiometric CdTe in the temperature range 750—1050 °C. Journal of Crystal Growth. 1985; 73(1): 77—82. https://doi.org/10.1016/0022-0248(85)90333-1

19. Shalimova K.V. Physics of semiconductors. St. Petersburg: Lan’; 2010. 392 p. (In Russ.)

20. Kröger F.A. The defect structure of CdTe. Revue de Physique Appliquee. 1977; 12(2): 205—210. https://doi.org/10.1051/rphysap:01977001202020500

21. Medvedev S.A., Maksimovsky S.N., Kiseleva K.V., Klevkov Yu.V., Sentyurina N.N. On the nature of point defects in undoped CdTe. Izvestiya AN SSSR. Neorganicheskie Materialy. 1973; 9(3): 356—360. (In Russ.)

22. Medvedev S.A., Martynov V.N., Kobeleva S.P. On the possibility of existence of anti-structural defects in undoped CdTe. Izvestiya AN SSSR. Kristallografiya. 1983; 28(2): 394. (In Russ.)

23. Fochuk P., Grill R., Panchuk O. The nature of point defects in CdTe. Journal of Electronic Materials. 2006; 35(6): 1354—1359. https://doi.org/10.1007/s11664-006-0268-9

24. Вerding М.А. Native defects in CdTe. Physical Review B. 1999; 60(12): 8943—8950. https://doi.org/10.1103/PhysRevB.60.8943

25. Kosyak V.V., Opanasyak A.S., Protsenko I.Yu. Ensemble of point defects in CdTe single crystals and films in the case of full equilibrium and quenching. Functional Materials. 2005; 12(4): 797—806.

26. Brebric R.F., Strauss A.J. Partial pressures in equilibrium with group IV Tellurides. I. Optical absorption method and results for PbTe. Journal of Chemical Physics. 1964; 40: 3230—3235. https://doi.org/10.1063/1.1724990

27. Medvedev S.A., Martynov V.N., Kobeleva S.P. Investigation of temperature dependence of partial pressures of components over cadmium telluride. Elektronnaya Tekhnika. Seriya 6. Materialy. 1980; (8(145)): 53—58. (In Russ.)


Review

For citations:


Kobeleva S.P. Determination of stoichiometry deviation in wide-band II-VI semiconductors on the basis of equilibrium vapor phase composition. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(2):107-114. (In Russ.) https://doi.org/10.17073/1609-3577-2022-2-107-114

Views: 437


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)