Technology and thermomechanics in growing tubular silicon single crystals
https://doi.org/10.17073/1609-3577-2022-3-202-213
Abstract
The problem of growing high-resistance low-dislocation tubular silicon single crystals for non-planar manufacturing technologies of epitaxial p-n junctions and the production of new-generation power semiconductor devices is considered. The possibilities of Stepanov method for growing volumetric profiled crystalline products, the application of which is based on the use of shapers of various designs, are discussed. In particular, the shortcomings of shapers associated with the melt contamination by foreign particles and impurities are discussed. Therefore, the main attention is paid to the use of equipment that implements crystal growth from a melt without a shaper by Czochralski method. The processes of thermal mechanics are preliminary analyzed in relation to the existing and well-established process of growing polycrystalline highly dislocation silicon pipes of large diameter by Czochralski method for epitaxial reactors.
It is noted that the growth of tubular low-dislocation small diameter silicon single crystals requires a significant modernization of the standard hot zone, which in this work is implemented for “REDMET-10” Czochralski furnace. By means of computer simulation, thermal mechanical processes are calculated for such a modernized Czochralski furnace. The parameters of grown tubular silicon single crystals are characterized, and their manufacturing suitability for power semiconductor devices using nonplanar technology is assessed.
About the Authors
N. A. VerezubRussian Federation
101-1 Vernadskii Ave., Moscow 119526
Nataliya A. Verezub — Cand. Sci. (Phys.-Math.), Senior Researcher
L. V. Kozhitov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
T. T. Kondratenko
Russian Federation
53 Leninskiy Ave., Moscow, 119991
Timofey T. Kondratenko — Cand. Sci. (Eng.), Researcher
A. I. Prostomolotov
Russian Federation
101-1 Vernadskii Ave., Moscow 119526
Anatoly I. Prostomolotov — Dr. Sci. (Eng.), Leading Researcher
I. V. Silaev
Russian Federation
44-46 Vatutina Str., Vladikavkaz, North Ossetia–Alania Republic, 362025
Ivan V. Silaev — Cand. Sci. (Eng.), Assistant Professor, Head of Physics and Astronomy Department
References
1. Stepanov A.V. A new method for obtaining products (sheets, pipes, bars of various profiles) directly from the melt. Zhurnal Tekhnicheskoi Fiziki. 1959; 29(3): 381—393. (In Russ.)
2. Stepanov A.V., Tsvinsky S. Obtaining single crystals of germanium of a certain shape. Fizika Tverdogo Tela. 1965; 7: 194—199. (In Russ.)
3. Antonov P.I. The shape and properties of crystals grown from the melt by the Stepanov method. In: Growth of crystals. Vol. 13. Moscow: Nauka; 1980: 171—179. (In Russ.)
4. Nosov Yu.G., Nikanorov S.I. Cultivation of profiled crystals during capillary melt forming. Leningrad: LIYaF; 1979. 41 р. (In Russ.)
5. Abrosimov N.V., Brantov S.K., Tatarchenko V.A., Lux B. Cultivation of profiled silicon crystals according to the Stepanov method using various heating options. Bulletin of the Russian Academy of Sciences: Physics. 1983; 47(2): 351—355. (In Russ.)
6. Tatarchenko V.A., Brener E.A. Stability of the crystallization process from the melt during capillary shaping. Bulletin of the Russian Academy of Sciences: Physics. 1976; 40(7): 1456—1467. (In Russ.)
7. Sachkov G.V., Tatarchenko V.A., Levinzon D.I. Control of the process of capillary shaping of single crystals grown from melt. Bulletin of the Russian Academy of Sciences: Physics. 1973; 37(11): 2288—2291. (In Russ.)
8. Antonov P.I., Zatulovsky L.M., Kostygov A.S. et al. Obtaining profiled single crystals and products by the Stepanov method. Leningrad: Nauka; 1981. 280 p. (In Russ.)
9. Luttsev V.B., Milvidsky M.G., Inozemtsev A.V., Sidorenko N.V. Mathematical modeling of the process of growing large-sized single crystals of germanium by the Stepanov method. In: Growth of crystals. Moscow: Nauka; 1983: 4—11. (In Russ.)
10. Leibovich V.S. Dynamics of crystal formation according to the Stepanov method. Bulletin of the Russian Academy of Sciences: Physics. 1983; 47(2): 219—229. (In Russ.)
11. Sachs E.M. Thermal sensitivity and stability of EFG silicon ribbon growth. Journal of Crystal Growth. 1980; 50(1): 102—113. https://doi.org/10.1016/0022-0248(80)90235-3
12. Eriss L., Stormont R.W., Surek T., Taylor A.S. The growth of silicon tubes by EFG process. Journal of Crystal Growth. 1980; 50(1): 200—211. https://doi.org/10.1016/0022-0248(80)90244-4
13. Alioshin A.A., Bletscan N.I., Bogatyriov S.F., Fedorenko V.N. Silicon furnace components for microelectronic applications fabricated from shaped silicon tubes. Journal of Crystal Growth.1990; 104(1): 130—135. https://doi.org/10.1016/0022-0248(90)90321-B
14. Ginkin V.P., Alioshin A.A., Epimakhov I.D., Panfilov I.V., Prostomolotov A.I. Analysis of thermostress state in silicon tubes during its melt growing. Proc. 4th Int. Conf. “Single Crystal Growth and Heat&Mass Transfer”. In 4 vol. September 24–28, 2001. Obninsk, Russia. Obninsk; 2001.Vol. 3: 680—688.
15. Wijaranakula W. A real-time simulation of point defect reactions near the solid and melt interface of a 200 mm diameter Czochralski silicon crystal. Journal of the Electrochemical Society. 1993; 140(11): 3306—3316. https://doi.org/10.1149/1.2221028
16. Karabasov Y.S., Kozhitov L.V., Kondratenko T.T., Krapukhin V.V., Kondratenko T.Ya. Devices and technology based on non-planar silicon. In: New materials. Мoscow: MISiS; 2002: 15—184. (In Russ.)
17. Kozhitov L.V., Karpasyuk V.K., Kozhitov L.V. Promising technologies and equipment for materials science, micro- and nanoelectronics. Proc. of the IV Inter. Russ.-Japan. Seminar. Moscow MISiS – ULVAC Inc.; Astrakhan, AGU. May 20–23, 2006. Miscow MISiS; Astrakhan’: AGU; 2006: 30—310. (In Russ.)
18. Patent (RU) No. 2007112010/15, IPC C30B15/00. Kozhitov L.V., Kondratenko T.T., Krapukhin V.V., Kazimirov N.I., Sorokin S.L., Taradey V.A., Bliev A.P., Silaev I.V. A method for growing hollow cylindrical Si single crystals based on the Chokhralsky method and a device for its implementation. Appl. 03.04.2007; publ. 20.05.2009. (In Russ.). https://www.freepatent.ru/patents/2355831
19. Bliev A.P., Silaev I.V., Kozhitov L.V., Kondratenko T.T. Obtaining profile single crystals of tubular silicon. Fundamental Research. 2007; (12-3): 519—520. (In Russ.)
20. Garaza E.V. Tumaev E.N. Convective mass transfer in the melt during crystal growing by the Chokhralsky method. Reports of the IV Conf. of young scient. “Rheology and physico-chemical mechanics of heterophase systems”. June 20–24, 2015. Moscow: 107—108. (In Russ.)
21. Bowen D., Tanner B. High resolution x-ray diffractometry and topography. UK; USA: Taylor & Francis Ltd; 1998. 263 p. (Russ. Transl.: Bouen B.K., Tanner D.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya. St. Petersburg: Nauka; 2002. 274 p.)
22. Verezub N.A., Prostomolotov A.I. Mechanics of growing and heat treatment processes of monocrystalline silicon. Mechanics of Solids. 2020; 55(5): 643—653. (In Russ.). https://doi.org/10.31857/S0572329920040157
23. Prostomolotov A., Ilyasov H., Verezub N. CrystmoNet remote access code for Czochralski crystal growth modeling. Science and Technology. 2013; 3(2A): 18—25. https://doi.org/1010.5923/s.scit.201301.04
Review
For citations:
Verezub N.A., Kozhitov L.V., Kondratenko T.T., Prostomolotov A.I., Silaev I.V. Technology and thermomechanics in growing tubular silicon single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(3):202-213. (In Russ.) https://doi.org/10.17073/1609-3577-2022-3-202-213