Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Deep tellurium refinement: improvement of equipment and technology using process simulation

https://doi.org/10.17073/1609-3577-2022-3-214-226

Abstract

Simulation data have been presented on tellurium deep refinement process based on refinement technique developed by the Authors and implemented on the basis of analysis of the thermodynamical condition of the process unit using the FlowSimulation software from SolidWorks. The technique suggested herein has been implemented in a plant having a vertical air-tight reactor arranged inside a multi-zone thermal unit and providing for a combination of sequential refinement stages based on different techniques and integrated in a single process. The calculations are based on experimental data which have allowed one to determine the boundary conditions of the mathematical model using previous experience of work with the abovementioned software product. The temperature profiles have been calculated taking into account all the types of heat transfer in the system, the weight and dimensions of the system components and the physicochemical properties of refined tellurium, materials of reactor fittings and reactor media. The boundary conditions for the thermal calculations have been the temperature modes of process stages with specific known temperatures at local points of reactor fittings where temperature gages connected to a PID controller have been installed. During the simulation of specific process conditions for the refinement technique, process modes and design of equipment fittings components have been corrected. The Authors have developed and fabricated test models of the process and imitation equipment, and analysis of the thermal fields for the final model has shown good agreement with the mathematical model. Equipment upgrading and process parameter correction on the basis of the simulation results have allowed T-udo Grade tellurium to be refined to a 99.99992 wt.% purity by 30 main impurities with a product yield of at least 60% in the course of physical experiments.

About the Authors

V. N. Abryutin
ADV-Engineering, LLC
Russian Federation

3B 1st Lyusinovsky Lane, Moscow 119049

Vladimir N. Abryutin — General Director



I. I. Maronchuk
ADV-Engineering, LLC
Russian Federation

3B 1st Lyusinovsky Lane, Moscow 119049

Igor I. Maronchuk — Cand. Sci. (Eng.), Director of Operations



N. A. Potolokov
ADV-Engineering, LLC
Russian Federation

3B 1st Lyusinovsky Lane, Moscow 119049

Nikolai A. Potolokov — Cand. Sci. (Chem.), Head of the Development Department



D. D. Sanikovich
ADV-Engineering, LLC
Russian Federation

3B 1st Lyusinovsky Lane, Moscow 119049

Daria D. Sanikovich — Chief Technologist

 



N. I. Сherkashina
Sevastopol State University
Russian Federation

33 Universitetskaya Str., Sevastopol, Republic of Crimea 299053

Natalia I. Cherkashina — Cand. Sci. (Eng.), Associate Professor of the Department of Chemistry and Chemical Technologies



References

1. Azhazha V.M., V’yugov P.N., Kovtun G.P., Neklyudov I.M. Production and use of some high-purity rare metals. Problems of Atomic Science and Technology. Series: Vacuum, pure materials, superconductors. 2004; (6(14)): 3—6. (In Russ.). http://dspace.nbuv.gov.ua/bitstream/handle/123456789/81248/01-Azhazha.pdf

2. Kovtun G.P., Kondrik A.I. Investigation of the properties of semiconductor materials for detectors of ionizing radiation. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2003; (6): 3—6. (In Russ.). http://dspace.nbuv.gov.ua/bitstream/handle/123456789/70708/01-Condrik.pdf

3. Kondrik A.I., Kovtun G.P. Influence of impurities and structural defects on electrophysical and detector properties of CdTe and CdZnTe. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2019; (5-6): 43—50. (In Russ.). https://doi.org/10.15222/TKEA2019.5-6.43

4. Shcherban’ A.P., Kovtun G.P. Obtaining high purity cadmium for microelectronics. Visnyk of V.N. Karazin Kharkiv National University. Physical series “Nuclei, particles, fields”. 2004; (642(3(25))): 27—34. (In Russ.). http://nuclear.univer.kharkov.ua/lib/642_3(25)_04_p27-34.pdf

5. Gribov B.G. Critical materials of electronic engineering. In: High-purity substances and materials. Obtaining, analysis, application. Abstracts XII Сonf. Nizhnii Novgorod, May 31 – June 3, 2004. Nizhnii Novgorod: Izdatel’ Yu.A. Nikolaev; 2004: 4—6. (In Russ.)

6. Kovtun G.P., Kravchenko A.I., Shcherban’ A.P. Production of high-purity gallium, zinc, cadmium and tellurium for microelectronics. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2001; (3): 6—8. (In Russ.)

7. Azhazha V.M., Kovtun G.P., Neklyudov I.M. An integrated approach to obtaining high-purity materials for electronics. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2002; (6): 3—6. (In Russ.)

8. Churbanova M.F., Karpova Yu.A., Zlomanova P.V., Fedorov V.A., eds. High-purity substances. Мoscow: Nauchnyi mir; 2018. 994 p. (In Russ.). https://www.elibrary.ru/fjftev

9. Kul’chitskii N.A., Naumov A.V. State of markets of cadmium, tellurium, and related compounds. Izvestiya. Non-Ferrous Metallurgy. 2010; (6): 58—65. (In Russ.). https://www.elibrary.ru/nbhycr

10. Kozin L.F., Berezhnoi E.O., Kozin K.L. Patterns of deep purification of cadmium by distillation. Vysokochistye Veshchestva. 1996; (5): 11—29. (In Russ.)

11. Kalashnik O.N., Nisel’son N.A. Purification of simple substances by distillation with hydrothermal oxidation of impurities. Vysokochistye Veshchestva. 1987; (2): 74—78. (In Russ.)

12. Shcherban A.P., Kovtun G.P., Gorbenko Y.V., Solopikhin D.A., Virich V.D., Pirozhenko L.A. Production of high purity granular metals: cadmium, zinc, lead. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2017; (1-2): 55—60. (In Russ.). https://doi.org/10.15222/ TKEA2017.1-2.55

13. Patent (RU) No. 2687403, IPCC01B 19/02, C22B 9/04. Grishechkin M.B., Khomyakov A.V., Mozhevitina E.N., Avetisov I.Kh. Method for producing high-purity tellure by distillation with low content of selenium. Appl.: 08.10.2018, publ.: 13.05.2019. (In Russ.). https://yandex.ru/patents/doc/RU2687403C1_20190513

14. Grishechkin M.B. Application of gas-phase technologies for deep purification of substances based on rare elements. Diss. Cand. Sci. (Chem.). Мoscow; 2021. 256 р. (In Russ.). http://www.irea.org.ru/education/dissertation-council/Диссертация_Гришечкин_ФИН.pdf

15. Aleksandrov B.N., D’yakov I.G. Purification of technical cadmium by vacuum distillation using a heated condenser. The Physics of Metals and Metallography. 1962; 14(4): 569—573. (In Russ.)

16. Grishechkin M.B., Mozhevitina E.N., Khomyakov A.V., Zykova M.P., Avetisov R.I., Avetissov I.C. Deep tellurium purification for electronic and photonic materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016; 19(4): 235—240. (In Russ.). https://doi.org/10.17073/1609-3577-2016-4-235-240

17. Potolokov N.A., Fedorov V.A. Ultrapurification of tellurium and cadmium by distillation and crystallization. Inorganic Materials. 2012; 48(11): 1082—1087. https://doi.org/10.1134/S0020168512110106

18. Pfann G. Zone melting. NY: Wiley; London: Chapman and Hall; 1960. 272 p. (Russ. Transl.: Pfann V. Zonnaya plavka. Moscow: Metallurizdat; 1960. 272 p.)

19. Aleksandrov B.N., Verkin B.I. Purification of electrolytically pure cadmium by zone recrystallization and vacuum distillation. The Physics of Metals and Metallography. 1960; 9(3): 362—365. (In Russ.)

20. Shcherban’ A.P., Kovtun G.P., Datsenko O.A. Classification of the behavior of impurities in zinc, cadmium and tellurium during crystallization purification. Problems of Atomic Science and Technology. Series: Vacuum, pure materials, superconductors.2004; (6): 16—20. (In Russ.). http://dspace.nbuv.gov.ua/bitstream/handle/123456789/81250/03-Kovtun.pdf?sequence=1

21. Patent (RU) No. 2777064, IPC C01B 19/02, C22B 9/04. Davydova E.V., Egorov M.A., Maronchuk I.I., Sanikovich D.D. Method for deep cleaning of metals. Appl.: 17.06.2021; publ.: 22.07.2022. (In Russ.). https://patentimages.storage.googleapis.com/2e/e4/28/125c8a932942fa/RU2776574C1.pdf

22. Patent (RU) No. 2777064, IPC C01B 19/02, C22B 9/04, C22B 9/02. Davydova E.V., Egorov M.A., Maronchuk I.I., Sanikovich D.D. Apparatus for deep purification of metals Davydova E.V., Egorov M.A., Maronchuk I.I., Sanikovich D.D. Appl.: 17.06.2021; publ.: 01.08.2022. (In Russ.). https://patentimages.storage.googleapis.com/87/58/10/12c6a34b7e8f24/RU2777064C1.pdf

23. Abryutin V.N., Davydova E.V., Egorov M.A., Maronchuk I.I., Sanikovich D.D. Deep purification of tellurium, zinc and cadmium for electronic applications. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhnikii = Materials of Electronics Engineering. 2022; 25(2): 164—174. (In Russ.). https://doi.org/10.17073/1609-3577-2022-2-164-174

24. Maronchuk I.I., Sanikovich D.D., Potapkov P.V., Vel′chenko A.A. Improvement of the processes of liquid-phase epitaxial growth of nanoheteroepitaxial structures. Journal of Engineering Physics and Thermophysics. 2018; 91(2): 491—497. https://doi.org/10.1007/s10891-018-1769-0

25. Maronchuk I.I., Sanikovitch D.D., Cherkashin A.S., Nitchev H., Dimova-Malinovska D. Improving the growth of Ge quantum dots by liquid-phase epitaxy. Journal of Physics: Conference Series. 2017; (794): 012012. https://doi.org/10.1088/1742-6596/794/1/012012

26. Zazvorka J., Hlidek P., Franc J., Pekarek J., Grill R. Photoluminescence study of surface treatment effects on detector-grade CT. In: Semiconductor Science and Technology. 2016; 31(2): 250—258. https://doi.org/10.1088/0268-1242/31/2/025014

27. Zázvorka J. Doctoral thesis, photoconductivity, photoluminescence and charge collection in semiinsulating CT and CZT. Prague: Institute of Physics of Charles University; 2016. 49 p. https://dspace.cuni.cz/handle/20.500.11956/82430


Review

For citations:


Abryutin V.N., Maronchuk I.I., Potolokov N.A., Sanikovich D.D., Сherkashina N.I. Deep tellurium refinement: improvement of equipment and technology using process simulation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(3):214-226. (In Russ.) https://doi.org/10.17073/1609-3577-2022-3-214-226

Views: 486


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)