Effect of treatment in nitrogen plasma on the electrical parameters of AlGaN/GaN heterostructures
https://doi.org/10.17073/1609-3577-2022-3-227-237
Abstract
In this work, the influence of deep levels formed at the SiON/AlGaN interface under the nitrogen plasma action during the deposition of a SiON film on the electrical parameters
of SiON/AlGaN/GaN structures were studied. The concentration and mobility of free carriers in 2DEG and the capacitance parameters of the structures were measured. It has been experimentally established that short-term action of nitrogen plasma (25 and 50 sec.) does not change the concentration of free carriers in 2DEG, but leads to a decrease in their mobility. The value of the charge that can form at the SiON/AlGaN interface has been calculated. With the help of C–V measurements, it was experimentally shown how the charge in the SiON/AlGaN/GaN system changes during one measurement cycle at different voltage ranges. Based on the consideration of the energy band diagrams of the system, possible explanations for the charge redistribution processes in the analyzed system under certain actions are proposed.
Keywords
About the Authors
K. L. ЕnisherlovaRussian Federation
27 Okruzhnoy Passage, Moscow 105187
Kira L. Еnisherlova — Dr. Sci. (Eng.), Head of the Laboratory
L. A. Seidman
Russian Federation
27 Okruzhnoy Passage, Moscow 105187
Lev A. Seidman — Cand. Sci. (Eng.), Leading Researcher
S. Yu. Bogolyubova
Russian Federation
27 Okruzhnoy Passage, Moscow 105187
Svetlana Yu. Bogolyubova — 1st Category Engineer
References
1. Hashizume T., Nishiguchi K., Kaneki S., Kuzmik J., Yatabe Z. State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Materials Science in Semiconductor Processing. 2018; 78: 85—95. https://doi.org/10.1016/j.mssp.2017.09.028
2. Vasil’ev A.G., Kolkovskii Yu.V., Kontsevoi Yu.A. Microwave devices and devices based on wide-gap semiconductors. Moscow: Tekhnosfera; 2011. 215 p. (In Russ.)
3. Chan C.Y., Lee T.C., Hsu S.S., Chen L., Lin Y.S. Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors. Japanese Journal of Applied Physics. 2007; 46(2R): 478. https://doi.org/10.1143/JJAP.46.478
4. Zhang A., Zhang L., Tang Z., Cheng X., Wang Y., Chen K.J., Chan M. Analytical modeling of capacitances for GaN HEMTs, including parasitic components. IEEE Transactions on Electron Devices. 2014; 61(3): 755—761. https://doi.org/10.1109/TED.2014.2298255
5. Asubar J.T., Yatabe Z., Gregusova D., Hashizume T. Controlling surface/interface states in GaN-based transistors: surface model, insulated gate, and surface passivation. Journal of Applied Physics. 2021; 129(12): 121102. https://doi.org/10.1063/5.0039564
6. Lyons J.L., Wickramaratne D., Van de Walle C.G. A first-principles understanding of point defects and impurities in GaN. Journal of Applied Physics. 2021; 129(11): 111101. https://doi.org/10.1063/5.0041506
7. Enisherlova K.L., Kulikauskas V.S., Seidman L.A., Pishchagin V.V., Konovalov A.M., Korneev V.I. Plasma-chemical treatment effect observed during the fabrication of AlGaN/GaN devices. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2015; 9(4): 684—693. https://doi.org/10.1134/S102745101504008
8. Berlin E.V., Grigor’ev V.Yu., Seidman L.A. Inductive sources of high-density plasma and their technological applications. Moscow: Tekhnosfera; 2018. 461 р. (In Russ.)
9. Enisherlova K.L., Seidman L.A., Temper E.M., Kontsevoy Y.A. Effect of PECVD SiNx deposition process parameters on electrical properties of SiNx/AlGaN/GaN structures. Modern Electronic Materials. 2021; 7(2): 63—72. https://doi.org/10.3897/j. moem.7.2.73293
10. Seydman L.A., Kontsevoy Yu.A., Enisherlova K.L., Minnebaev S.V. PECVD obtained SiNx films for the passivation of AlGaN/GaN HEMT. Elektronnaya Tekhnika. Seriya 2: Poluprovodnikovye Pribory. 2020; (3(258)): 22—33. (In Russ.). https://doi.org/10.36815/2073-8250-2020-258-3-22-33
11. Gruzdov V.V., Kolkovskii Yu.A., Kontsevoi Yu.A. Input and process control of materials and structures of solid-state microwave electronics. Moscow: Tekhnosfera; 2017. 93 р. (In Russ.)
12. Nguyen D., Hogan K., Blew A., Cordes M. Improved process control, lowered costs and reduced risks through the use of non-destructive mobility and sheet carrier density measurements on GaAs and GaN wafers. Journal of Crystal Growth. 2004; 272(1-4): 59—64. https://doi.org/10.1016/j.jcrysgro.2004.08.046
13. Minnebaev S.V., Seidman L.A. Effects of the preliminary nitrogen plasma ion treatment on the PECVD SiNx passivation of AlGaN/GaN heterostructures. Elektronnaya Tekhnika. Seriya 2: Poluprovodnikovye Pribory. 2021; (1(260)): 20—33. (In Russ.). https://doi.org/10.36845/2073-8250-2021-260-1-20-33
14. Batavin V.V., Kontsevoi Yu.A., Fedorovich Yu.V. Measurement of parameters of semiconductor materials and structures. Moscow: Radio i svyaz’; 1985. 264 p. (In Russ.)
15. Quay R. Gallium nitride electronics. Springer Science & Business Media; 2008. 470 p. (Russ. Transl.: Kuei R. Elektronika na osnove nitrida galliya. Moscow: Tekhnosfera; 2011. 587 p.)
16. Ganguly S., Verma J., Li G., Zimmermann T., Xing H., Jena D. Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions. Applied Physics Letters. 2011; 99(19): 193504. https://doi.org/10.1063/1.3658450
17. Braga N., Mickevicius R., Gaska R., Shur M.S., Khan M.A., Simin G. Simulation of gate lag and current collapse in gallium nitride field-effect transistors. Applied Physics Letters. 2004; 85(20): 4780—4782. https://doi.org/10.1063/1.1823018
18. Yamaji K., Noborio M., Suda J., Kimoto T. Improvement of channel mobility in inversion-type n-channel GaN metal–oxide–semiconductor field-effect transistor by high-temperature annealing. Japanese Journal of Applied Physics. 2008; 47(10R): 7784. https://doi.org/10.1143/JJAP.47.7784
19. Koshkin A.V., Minnebaev S.V., Seidman L.A. Features of measuring laser resistance on the facility LEI-1610. Elektronnaya Tekhnika. Seriya 2: Poluprovodnikovye Pribory. 2022; (1(264)): 30—36. (In Russ.). https://doi.org/10.36845/2073-8259-2022-264-1-30-36
20. Seydman L.A. Effect of RF biasing applied to AlGaN/GaN substrate during a plasma-enchanced chemical vapour deposition of SINX FI. Elektronnaya Tekhnika. Seriya 2: Poluprovodnikovye Pribory. 2021; (2(261)): 19—28. (In Russ.). https://doi.org/10.36845/2073-8250-2021-261-2-19-28
Review
For citations:
Еnisherlova K.L., Seidman L.A., Bogolyubova S.Yu. Effect of treatment in nitrogen plasma on the electrical parameters of AlGaN/GaN heterostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(3):227-237. (In Russ.) https://doi.org/10.17073/1609-3577-2022-3-227-237